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1 Rear steering available. How to use it?

In

chose the velocity dependent pre-filter as

Fr(s, v) = K(v)
1 + TD(v)s

1 + T1(v)s
,

where K < 0 at low speed for better maneuverability in, e.g.,
parking. At high speed K > 0.
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1 Rear steering available. How to use it?

2 Decoupling the driver’s task of controlling the vehicle position
w.r.t. a desired path from the yaw response

Advantages
1 The driver has to focus on the lateral motion only. Disturbances on

the yaw dynamics are rejected by the rear-steering.

2 The yaw damping can be varied without affecting the lateral

vehicle behavior
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1 Rear steering available. How to use it?

2 Decoupling the driver’s task of controlling the vehicle position
w.r.t. a desired path from the yaw response

3 Simple control design highlighting the properties of the yaw and
lateral response to the front and rear steering
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Assumption

The vehicle mass is distributed into two masses concentrated at the
front and the rear axle.

In this case the inertia J and the mass m are related by

J = mℓrℓf
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The linearized steering dynamics are given by

[

β̇
ṙ

]

=

[

a11 a12
a21 a22

] [

β
r

]

+

[

b11 b12
b21 b22

] [

δf
δr

]

,
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The linearized steering dynamics are given by

[

β̇
ṙ

]

=

[

a11 a12
a21 a22

] [

β
r

]

+

[

b11 b12
b21 b22

] [

δf
δr

]

,

where

a11 = −(cr + cf )/mv, a12 = −1 + (crℓr − cf ℓf)/mv2,
a21 = (crℓr − cf ℓf)/mℓrℓf , a22 = −(crℓ

2

r + cf ℓ
2

f )/mvℓrℓf ,

b11 = cf/mv, b12 = cr/mv,
b21 = cf/mℓr, b22 = −cr/mℓf .
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The characteristic polynomial of

[

β̇
ṙ

]

=

[

a11 a12
a21 a22

] [

β
r

]

+

[

b11 b12
b21 b22

] [

δf
δr

]

,

is given by

p(s) = ω2

0
+ 2D0ω0s+ s2
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The characteristic polynomial of

[

β̇
ṙ

]

=

[

a11 a12
a21 a22

] [

β
r

]

+

[

b11 b12
b21 b22

] [

δf
δr

]

,

is given by

p(s) = ω2

0
+ 2D0ω0s+ s2

where

ω2

0
=

crcf ℓ
2 +mv2(crℓr − cf ℓf )

m2v2ℓrℓf
,

D0 =
ℓ(crℓr + cf ℓf)

2
√

ℓrℓf [crcf ℓ2 +mv2(crℓr = cf ℓf )]
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Theorem

The steering control law given by Hf (s) =
1

s
is decoupling. I.e.,

1 r and δf are unobservable from af ,

2 af is not controllable from δr.
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Theorem

The steering control law given by Hf (s) =
1

s
is decoupling. I.e.,

1 r and δf are unobservable from af ,

2 af is not controllable from δr.

Proof

1 Augment the state-space model by adding δ̇f = ef .

2 Transform the state-space model to the new state vector [af r δf ],
where

af = v(r + β̇) + ℓf ṙ

= v(r + a11β + a12r + b11δf + b12δr)

+ ℓf (a21β + a22r + b21δf ) + b22δr

= d0(−β − ℓfr/v + δf ), d0 = ℓcf/mℓr
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Proof (Cont.)
3 Close the feedback loop with

δ̇f = wf − r
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Proof (Cont.)
3 Close the feedback loop with

δ̇f = wf − r

The model resulting from steps 1) - 3) is









ȧf
−−
ṙ

δ̇f









=









d11 | 0 0
−− −− −− −−
d21 | d22 d23
0 | −1 0

















af
−−
r
δf









+









d0 0
−− −−
0 d22
1 0









[

wf

δr

]

,

af =
[

1 | 0 0
]









af
−−
r
δf









,
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Proof (Cont.)

where

d11 = −ℓcf/mvℓr

d21 = −(crℓr − cf ℓf )/cf ℓfℓ

d22 = −crℓ/mvℓf

d23 = cr/mℓf

In conclusion

1 r and δf can’t be observed from af ,

2 af is not controllable from δr.
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In conclusion, the steering dynamics can be splint into the following
two subsystems

1 Lateral motion of the front axle

ȧf = d11af + d0wf ⇒ af (s) = Gf (s)Ff (s)δS(s)

2 Yaw motion
[

ṙ

δ̇f

]

=

[

d22 d23
−1 0

] [

r
δf

]

+

[

d21
0

]

af

+

[

0 b22
1 0

] [

wf

δr

]

,
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In conclusion, the steering dynamics can be splint into the following
two subsystems

1 Lateral motion of the front axle

ȧf = d11af + d0wf ⇒ af (s) = Gf (s)Ff (s)δS(s)

2 Yaw motion
[

ṙ

δ̇f

]

=

[

d22 d23
−1 0

] [

r
δf

]

+

[

d21
0

]

af

+

[

0 b22
1 0

] [

wf

δr

]

,

with characteristic polynomial

pI(s) = ω2

I + 2DIωIs+ s2,

and

ω2

I =
cr
mℓf

, DI =
ℓ

2v

√

cr
mℓf

.
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Compare now the damping of the uncontrolled and the decoupled
systems. I.e., DI vs. D0.
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Set DI = D0 and solve for v

v2ℓ =
c2rℓrℓ

2

mℓf (cf ℓf + 3crℓr)
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Compare now the damping of the uncontrolled and the decoupled
systems. I.e., DI vs. D0.

Set DI = D0 and solve for v

v2ℓ =
c2rℓrℓ

2

mℓf (cf ℓf + 3crℓr)

For v < vℓ the decoupled vehicle has higher (better) damping

A comparison of ω0 and ωI provides the limit speed

vω = ℓ

√

cr
mℓf

.
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Compare now the damping of the uncontrolled and the decoupled
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Set DI = D0 and solve for v
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Compare now the damping of the uncontrolled and the decoupled
systems. I.e., DI vs. D0.

Set DI = D0 and solve for v

v2ℓ =
c2rℓrℓ

2

mℓf (cf ℓf + 3crℓr)

For v < vℓ the decoupled vehicle has higher (better) damping

A comparison of ω0 and ωI provides the limit speed

vω = ℓ

√

cr
mℓf

.

For v < vω the decoupled vehicle has lower natural frequency. Note
that vω is independent of the speed.
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We found DI < D0 at high speed. I.e., the decoupled vehicle has worse
damping at high speed
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We found DI < D0 at high speed. I.e., the decoupled vehicle has worse
damping at high speed

We now design a rear steering controller

1 rendering DI independent of the speed,

2 recovering the damping of the uncontrolled vehicle at high speed

Theorem
The rear steering control law

δr = (ℓ/v − kD)(wr − r),

yields to speed independent eigenvalues of the yaw dynamics.
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Proof.

Plug δr = (ℓ/v − kD)(wr − r) into the decoupled yaw and controller
dynamics

[

ṙ

δ̇f

]

=

[

d22 − (ℓ/v − kD)b22 d23
−1 0

] [

r
δf

]

+

[

d21
0

]

af

+

[

0 b22(ℓ/v − kD)
1 0

] [

wf

wr

]
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]
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r
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]

+

[
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0
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+

[
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] [
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The characteristic polynomial becomes

pII(s) = ω2
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Proof.

Plug δr = (ℓ/v − kD)(wr − r) into the decoupled yaw and controller
dynamics

[

ṙ

δ̇f

]

=

[

d22 − (ℓ/v − kD)b22 d23
−1 0

] [

r
δf

]

+

[

d21
0

]

af

+

[

0 b22(ℓ/v − kD)
1 0

] [

wf

wr

]

The characteristic polynomial becomes

pII(s) = ω2

II + 2DIIωIIs+ s2,

with

ω2

II =
cr
mℓf

, DII =
kD
2

√

cr
mℓf

=
kDωII

2
.
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m = m1 +m2, J = m1ℓ
2

1 +m2ℓ
2

r

m1ℓ1 = m2ℓr, J = m2ℓ1ℓr +m1ℓ1ℓr

J = mℓ1ℓr

Recall that the decoupling front steering control law has been derived
under the following

Assumption

The vehicle mass is distributed into two masses concentrated at the
front and the rear axle.

The above assumption is equivalent to J = mℓfℓr
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m = m1 +m2, J = m1ℓ
2

1 +m2ℓ
2

r

m1ℓ1 = m2ℓr, J = m2ℓ1ℓr +m1ℓ1ℓr

J = mℓ1ℓr

m1 =
m2ℓ2r

J +mℓ2r
, m2 =

mJ

J +mℓ2r

Recall that the decoupling front steering control law has been derived
under the following

Assumption

The vehicle mass is distributed into two masses concentrated at the
front and the rear axle.

The above assumption is equivalent to J = mℓfℓr

In case of arbitrary mass distribution
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Assume v̇ = 0 and small δf . Write the lateral and yaw dynamics as

[

mv(β̇ + r)
Jṙ

]

=

[

1 1
ℓf −ℓr

] [

ff (αf )
fr(αr)

]

.
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Assume v̇ = 0 and small δf . Write the lateral and yaw dynamics as

[

mv(β̇ + r)
Jṙ

]

=

[

1 1
ℓf −ℓr

] [

ff (αf )
fr(αr)

]

.

Recall that

ff(0) = 0 ff (αf )/αf > 0 αf = δf − βf

αr = −βr αr = δr − βr

Introduce now β1 = β +
ℓ1r

v
as state variable

[

mv(β̇1 + r − ℓ1ṙ
v
)

Jṙ

]

=

[

1 1
ℓf −ℓr

] [

ff(αf )
fr(αr)

]

,
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Assume v̇ = 0 and small δf . Write the lateral and yaw dynamics as

[

mv(β̇ + r)
Jṙ

]

=

[

1 1
ℓf −ℓr

] [

ff (αf )
fr(αr)

]

.

Recall that

ff(0) = 0 ff (αf )/αf > 0 αf = δf − βf

αr = −βr αr = δr − βr

Introduce now β1 = β +
ℓ1r

v
as state variable

[

mv(β̇1 + r − ℓ1ṙ
v
)

Jṙ

]

=

[

1 1
ℓf −ℓr

] [

ff(αf )
fr(αr)

]

,

with

αf = δf − β1 − r
ℓf − ℓ1

v
, αr = −β1 + r

ℓr + ℓ1
v
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The dynamics of the yaw and the side slip of mass m1 can be
rearranged as

[

β̇1

ṙ

]

=

[

ℓ/mvℓr 0
ℓf/J −ℓr/J

] [

ff (αf )
fr(αr)

]

−

[

1
0

]

r
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The dynamics of the yaw and the side slip of mass m1 can be
rearranged as

[

β̇1

ṙ

]

=

[

ℓ/mvℓr 0
ℓf/J −ℓr/J

] [

ff (αf )
fr(αr)

]

−

[

1
0

]

r

Observe that,
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The dynamics of the yaw and the side slip of mass m1 can be
rearranged as

[

β̇1

ṙ

]

=

[

ℓ/mvℓr 0
ℓf/J −ℓr/J

] [

ff (αf )
fr(αr)

]

−

[

1
0

]

r

Observe that,

1 the rear tire force fr has no direct effect on β1

Theorem
The front steering control law

δ̇f = wf − r + ṙ
ℓf − ℓ1

v
,

renders the yaw rate r unobservable from the from tire slip angle αf .
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The dynamics of the yaw and the side slip of mass m1 can be
rearranged as

[

β̇1

ṙ

]

=

[

ℓ/mvℓr 0
ℓf/J −ℓr/J

] [

ff (αf )
fr(αr)

]

−

[

1
0

]

r

Observe that,

1 the rear tire force fr has no direct effect on β1

2 fr has an indirect effect on β1 through r

Theorem
The front steering control law

δ̇f = wf − r + ṙ
ℓf − ℓ1

v
,

renders the yaw rate r unobservable from the from tire slip angle αf .
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The dynamics of the yaw and the side slip of mass m1 can be
rearranged as

[

β̇1

ṙ

]

=

[

ℓ/mvℓr 0
ℓf/J −ℓr/J

] [

ff (αf )
fr(αr)

]

−

[

1
0

]

r

Observe that,

1 the rear tire force fr has no direct effect on β1

2 fr has an indirect effect on β1 through r

3 r enters linearly in the β1 dynamics

Theorem
The front steering control law

δ̇f = wf − r + ṙ
ℓf − ℓ1

v
,

renders the yaw rate r unobservable from the from tire slip angle αf .
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Proof.

Recall that αf = δf − β1 − r
ℓf − ℓ1

v
.
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Proof.

Recall that αf = δf − β1 − r
ℓf − ℓ1

v
. Differentiate αf

α̇f = δ̇f − β̇1 − ṙ
ℓf − ℓ1

v

= δ̇f −
ℓ

mvℓr
ff(αf ) + r − ṙ

ℓf − ℓ1
v
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Proof.

Recall that αf = δf − β1 − r
ℓf − ℓ1

v
. Differentiate αf

α̇f = δ̇f − β̇1 − ṙ
ℓf − ℓ1

v

= δ̇f −
ℓ

mvℓr
ff(αf ) + r − ṙ

ℓf − ℓ1
v

Plug δ̇f = wf − r + ṙ
ℓf − ℓ1

v
in the expression of α̇f

α̇f = wf −
ℓ

mvℓr
ff(αf )



Decoupling with arbitrary mass distribution

Paolo Falcone (CHALMERS) Yaw Damping via Front and Rear Steering July 8, 2013 24 / 24

Observe that, under the

Assumption

The vehicle mass is distributed into two masses concentrated at the
front and the rear axle.

ℓ1 = ℓf and the front steering control law reduces to the previous.


