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Lecture content
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2 Operating modes
3 Control design in vehicle following mode
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2 constant spacing
3 constant time gap

4 Transition logics

Note: The following notes have been extracted from

“Vehicle Dynamics and Control” by R. Rajamani
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ACC objectives
1 Maintaining a constant vehicle longitudinal speed in absence of

preceding vehicles

2 Maintaing a “safe” distance from the preceding (slower) vehicle, if
any

Actuators
1 Engine

2 Brakes

Sensors
1 Speed sensor (odometer)
2 Radar

◮ Range through
reflections

◮ Range rate through
doppler effect

Note. The ACC is an
“autonomous” system. I.e., no
wireless
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First introduced in Japan in early nineties

Originally thought as a “comfort and convenience” system

According statistics (over 90% highways accident cause by human
errors1) may impact safety as well

Basis of many automated driving systems available on the market
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Modes
1 Speed control

2 Vehicle following. I.e., maintaing a “safe” distance from the
preceding (slower) vehicle, if any

...+ logics for
1 “smoothly” switching between the two modes

2 handling, e.g., cut-in and cut-out maneuvers
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Individual vehicle stability

Define the spacing error as

δi = xi − xi−1 + Ldes.

The ACC provide individual vehicle stability if

ẍi−1 → 0 ⇒ δi → 0
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The string stability property implies that, during velocity transients,
the non-zero spacing errors do not amplify toward the tail of a string of
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aSwaroop, 1995, Swaroop and Hedrick, 1996
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String stability

The string stability property implies that, during velocity transients,
the non-zero spacing errors do not amplify toward the tail of a string of
ACC vehiclesa

aSwaroop, 1995, Swaroop and Hedrick, 1996

Individual vehicle stability is trivial. We will focus on string

stability



Vehicle following. Vehicle model

Paolo Falcone (CHALMERS) Adaptive Cruise Control July 5, 2013 11 / 40

Assumptions

Two level hierarchical control

Upper level calculates a desired acceleration to meet the control
requirements

Lower level calculates the engine and brake low level control inputs

Hence, model the i-th vehicle as either a double integrator

ẍi = ui,

or as

ẍi =
e−sτ

a+ sT
ui,

where ui = ẍides . Typically,

−5m/s2 ≤ ẍ ≤ 2m/s2
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Definition
Define

H(s) =
δi(s)

δi−1(s)
.

The chain of ACC vehicles is string stable ifa

1 ‖H(s)‖∞ ≤ 1

2 h(t) > 0, ∀t ≥ 0

aSwaroop, 1995

Intuitively,

1 Condition 1 guarantees that ‖δi‖2 ≤ ‖δi−1‖2
2 Condition 2 implies that the steady state spacing errors have the

same sign

More rigorous explanation follows
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Definitions (signals)

Consider a signal u(t) : t ∈ [−∞,∞] → u ∈ R. Define the following
norms

1 1-Norm ‖u‖1 =

∫
∞

−∞

|u(t)|dt

Definitions (systems)

Consider a linear, time-invariant, causal system y = g ∗ u, where g is
the impulse response and G = L (g)
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Definitions (signals)
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Definitions (signals)

Consider a signal u(t) : t ∈ [−∞,∞] → u ∈ R. Define the following
norms

1 1-Norm ‖u‖1 =

∫
∞
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(∫
∞
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)1/2

3 ∞-Norm ‖u‖∞ = sup
t

|u(t)|

Definitions (systems)

Consider a linear, time-invariant, causal system y = g ∗ u, where g is
the impulse response and G = L (g)

1 2-Norm ‖G‖2 =

(
1

2π

∫
∞

−∞

|G(jω)|2dω

)1/2

2 ∞-Norm ‖G‖∞ = sup
ω

|G(jω)|
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2-norm/2-norm gain

Consider the system y = g ∗ u, with G = L (g).

‖G‖∞ = sup
‖y‖2
‖u‖2
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2-norm/2-norm gain

Consider the system y = g ∗ u, with G = L (g).

‖G‖∞ = sup
‖y‖2
‖u‖2

Proof.
By the Parseval’s theorem

‖y‖22 = ‖Y ‖22 =
1

2π

∫
∞

−∞

|G(jω)|2|U(jω)|2dω

≤ ‖G‖2
∞

1

2π

∫
∞
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|U(jω)|2dω
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∞
‖U‖22 = ‖G‖2

∞
‖u‖22
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2-norm/2-norm gain

Consider the system y = g ∗ u, with G = L (g).

‖G‖∞ = sup
‖y‖2
‖u‖2

Proof.
By the Parseval’s theorem

‖y‖22 = ‖Y ‖22 =
1

2π

∫
∞

−∞

|G(jω)|2|U(jω)|2dω

≤ ‖G‖2
∞

1

2π

∫
∞

−∞

|U(jω)|2dω

= ‖G‖2
∞
‖U‖22 = ‖G‖2

∞
‖u‖22

Show now that ‖G‖∞ is the least upper bound on the 2-norm/2-norm
gain.
Choose u such that ‖u‖2 = 1 and show that ‖Y ‖22 = ‖G‖2

∞
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2-norm/∞-norm gain

Consider the system y = g ∗ u, with G = L (g).

‖G‖2 = sup
‖y‖∞
‖u‖2

Proof.
Apply the Cauchy-Schwarz inequality

|y(t)| =

∣
∣
∣
∣

∫
∞

−∞

g(t− τ)u(τ)dτ

∣
∣
∣
∣

≤

(∫
∞

−∞

g(t− τ)2dτ

)1/2 (∫ ∞

−∞

u(τ)2dτ

)1/2

= ‖g‖2‖u‖2 = ‖G‖2‖u‖2

Hence ‖y‖∞ ≤ ‖G‖2‖u‖2
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2-norm/∞-norm gain

Consider the system y = g ∗ u, with G = L (g).

‖G‖2 = sup
‖y‖∞
‖u‖2

Proof.
Apply the Cauchy-Schwarz inequality

|y(t)| =

∣
∣
∣
∣

∫
∞

−∞

g(t− τ)u(τ)dτ

∣
∣
∣
∣

≤

(∫
∞

−∞

g(t− τ)2dτ

)1/2 (∫ ∞

−∞

u(τ)2dτ

)1/2

= ‖g‖2‖u‖2 = ‖G‖2‖u‖2

Hence ‖y‖∞ ≤ ‖G‖2‖u‖2
Proof follows the same steps as before
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∞-norm gain/2-norm

Consider the system y = g ∗ u, with G = L (g).

‖y‖2
‖u‖∞

= ∞
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∞-norm gain/2-norm

Consider the system y = g ∗ u, with G = L (g).

‖y‖2
‖u‖∞

= ∞

Proof.
Choose a sinusoidal input signal with frequency ω, such that ω is not a
zero of G. Hence ‖u‖∞ = 1 and ‖y‖22 is unbounded
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∞-norm/∞-norm gain

Consider the system y = g ∗ u, with G = L (g).

‖g‖1 = sup
‖y‖∞
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∞-norm/∞-norm gain

Consider the system y = g ∗ u, with G = L (g).

‖g‖1 = sup
‖y‖∞
‖u‖∞

Proof.

|y(t)| =

∣
∣
∣
∣

∫
∞

−∞

g(t− τ)u(τ)dτ

∣
∣
∣
∣
≤

∫
∞

−∞

|g(t− τ)u(τ)| dτ

≤

∫
∞

−∞

|g(t− τ)| dτ‖u‖∞ = ‖g‖1‖u‖∞

Hence ‖y‖∞ ≤ ‖g‖1‖u‖∞
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∞-norm/∞-norm gain

Consider the system y = g ∗ u, with G = L (g).

‖g‖1 = sup
‖y‖∞
‖u‖∞

Proof.

|y(t)| =

∣
∣
∣
∣

∫
∞

−∞

g(t− τ)u(τ)dτ

∣
∣
∣
∣
≤

∫
∞

−∞

|g(t− τ)u(τ)| dτ

≤

∫
∞

−∞

|g(t− τ)| dτ‖u‖∞ = ‖g‖1‖u‖∞

Hence ‖y‖∞ ≤ ‖g‖1‖u‖∞

Proof follows the same steps as before



Useful results on gains2

2Swaroop, 1995
Paolo Falcone (CHALMERS) Adaptive Cruise Control July 5, 2013 18 / 40

If g(t) > 0 ∀t ≥ 0 then ‖g‖1 = ‖G‖∞
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If g(t) > 0 ∀t ≥ 0 then ‖g‖1 = ‖G‖∞

Proof.

Be γp = sup
‖y‖p
‖u‖p

for a induced p-norm. Since
‖y‖p
‖u‖p

≤ ‖g‖1,

|G(0)| ≤ ‖G(jω)‖∞ ≤ γp ≤ ‖g‖1.

If g(t) > 0 then

|G(0)| =

∣
∣
∣
∣

∫
∞

0

g(τ)dτ

∣
∣
∣
∣
≤

∫
∞

0

|g(τ)|dτ = ‖g‖1



In summary

Table: System gains

‖u‖2 ‖u‖∞

‖y‖2 ‖G‖∞ ∞

‖y‖∞ ‖G‖2 ‖g‖1

Moreover, if g(t) > 0 ∀t ≥ 0 then ‖g‖1 = ‖G‖∞
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Definition
Define

H(s) =
δi(s)

δi−1(s)
.

The chain of ACC vehicles is string stable ifa

1 ‖H(s)‖∞ ≤ 1

aSwaroop, 1995

The main objective is to obtain

‖δi‖∞ ≤ ‖δi−1‖∞,

i.e., ‖h‖1 ≤ 1. This is equivalent to ‖H‖∞ ≤ 1, with the additional
condition h(t) > 0, ∀t ≥ 0.
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Define the inter-vehicle spacing as

ǫi = xi − xi−1 + ℓi−1,

where ℓi−1 is the length of the i− 1-th vehicle.
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Define the inter-vehicle spacing as

ǫi = xi − xi−1 + ℓi−1,

where ℓi−1 is the length of the i− 1-th vehicle.

Define the spacing error as

δi = xi − xi−1 + Ldes,

where Ldes is the desired distance and includes ℓi−1.

Consider a double integrator model for the vehicle and a linear PD

controller

ẍi = −kpδi − kv δ̇i
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Differentiate twice the spacing error

δ̈i = ẍi − ẍi−1 = −kpδi − kv δ̇i + kpδi−1 + kv δ̇i−1
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Differentiate twice the spacing error

δ̈i = ẍi − ẍi−1 = −kpδi − kv δ̇i + kpδi−1 + kv δ̇i−1

Rearranging leads to the closed-loop error dynamics

δ̈i + kv δ̇i + kpδi = kpδi−1 + kv δ̇i−1,

corresponding to the transfer function

H(s) =
δi(s)

δi(s)
=

kp + kvs

s2 + kvs+ kp
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Differentiate twice the spacing error

δ̈i = ẍi − ẍi−1 = −kpδi − kv δ̇i + kpδi−1 + kv δ̇i−1

Rearranging leads to the closed-loop error dynamics

δ̈i + kv δ̇i + kpδi = kpδi−1 + kv δ̇i−1,

corresponding to the transfer function

H(s) =
δi(s)

δi(s)
=

kp + kvs

s2 + kvs+ kp

Problem. Find kp, kv such that

‖H‖∞ ≤ 1
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Solution. For individual vehicle stability, it must be kv, kp > 0.
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Solution. For individual vehicle stability, it must be kv, kp > 0.

Rewrite H(s) as

H(s) =
kp

s2 + kvs+ kp
︸ ︷︷ ︸

H1(s)

(
kv
kp

s+ 1

)

︸ ︷︷ ︸

H2(s)
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Rewrite H(s) as

H(s) =
kp

s2 + kvs+ kp
︸ ︷︷ ︸

H1(s)

(
kv
kp

s+ 1

)

︸ ︷︷ ︸

H2(s)

In order to have ‖H1‖∞ < 1, the damping must be larger than 0.707,
i.e.,

kv

2
√
kp

≥ 0.707 ⇒ kv ≥ 1.4141
√

kp
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Solution. For individual vehicle stability, it must be kv, kp > 0.

Rewrite H(s) as

H(s) =
kp

s2 + kvs+ kp
︸ ︷︷ ︸

H1(s)

(
kv
kp

s+ 1

)

︸ ︷︷ ︸

H2(s)

In order to have ‖H1‖∞ < 1, the damping must be larger than 0.707,
i.e.,

kv

2
√
kp

≥ 0.707 ⇒ kv ≥ 1.4141
√

kp

H2 has to be below one up to the resonant frequency
√
kp. Hence,

kp
kv

≥
√

kp ⇒
√

kp > kv
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Solution. In conclusion, the following conditions have to be satisfied

kv ≥ 1.4141
√

kp,
√

kp > kv, kp, kv > 0
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kp,
√
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String stability can’t be achieved with a PD controller based
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Question. Can string stability be achieved with any other linear
controller?
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Solution. In conclusion, the following conditions have to be satisfied

kv ≥ 1.4141
√

kp,
√

kp > kv, kp, kv > 0

String stability can’t be achieved with a PD controller based
on constant spacing policy

Question. Can string stability be achieved with any other linear
controller?

Answer. No, unless. . . .
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δi = xi − xi−1 + Ldes,

where Ldes = ℓi−1 + hẋi and h is the time gap
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Consider a double integrator model for the vehicle and the control law
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In Constant Time Gap (CTG) control policy, the desired inter-vehicle
distance varies with the speed

Define the spacing error as

δi = xi − xi−1 + Ldes,

where Ldes = ℓi−1 + hẋi and h is the time gap

Consider a double integrator model for the vehicle and the control law

ui = −
1

h
(ǫ̇i + λδi)

The error dynamics become

δ̇i = −λδi
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x i + ẍi = −

1

h
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Analyze the string stability property of the CTG policy

Combine the first order vehicle model and the control

law ui = −
1

h
(ǫ̇i + λδi). Obtain

τ
...
x i + ẍi = −

1

h
(ǫ̇i + λδi)

Differentiate twice the spacing error δi = ǫi + hẋi and replace
...
x i to

obtain

ǫ̈i = δ̈i +
1

τ

(

δ̇i + λδi

)

Solve for ǫi and replace in δi − δi−1 = ǫi − ǫi−1 + hǫ̇i to obtain

H(s) =
δi

δi−1
=

s+ λ

hτs3 + hs2 + (1 + λh) + λ

Problem. Find condition on τ and h such that ‖H‖∞ ≤ 1
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Theorem

‖H‖∞ ≤ 1 if and only if h ≥ 2τ .
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Proof
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δi
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s+ λ

hτs3 + hs2 + (1 + λh) + λ

Substitute s = jω

H(s) |s=jω =
jω + λ

(λ− hω2) + jω (1 + λh− τhω2)
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Proof
Consider the transfer function

H(s) =
δi

δi−1
=

s+ λ

hτs3 + hs2 + (1 + λh) + λ

Substitute s = jω

H(s) |s=jω =
jω + λ

(λ− hω2) + jω (1 + λh− τhω2)

Calculate

|H(s)|
2
=

ω2 + λ2

(λ− hω2)
2
+ ω2 (1 + λh− τhω2)

2
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Proof (Cont.)

Imposing |H(jω)| ≤ 1 leads to

ω2 + λ2 ≤
(
λ− hω2

)2
+ ω2

(
1 + λh− τhω2

)2
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Proof (Cont.)

Imposing |H(jω)| ≤ 1 leads to

ω2 + λ2 ≤
(
λ− hω2
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1 + λh− τhω2

)2

Squaring the terms in parentheses and rearranging

τ2h2ω4 +
(
h2 − 2τh− 2τλh2

)
ω2 + λ2h2 ≥ 0
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Proof (Cont.)

Imposing |H(jω)| ≤ 1 leads to

ω2 + λ2 ≤
(
λ− hω2

)2
+ ω2

(
1 + λh− τhω2

)2

Squaring the terms in parentheses and rearranging

τ2h2ω4 +
(
h2 − 2τh− 2τλh2

)
ω2 + λ2h2 ≥ 0

Study positiveness of aω4 + bω2 + c. Rewrite

aω4 + bω2 + c = a

(

ω4 + 2
b

2a
ω2 +

c

a

)

= a

[(

ω2 +
b

2a

)2

+
4ac− b2

4a2

]
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Proof (Cont.)

Hence aω4 + bω2 + c > 0 if

1 a, b, c > 0

2 b < 0, a > 0, c > 0 and 4ac− b2 > 0, i.e., b2 − 4ac < 0

Distinguish the following two cases

1 b > 0 corresponds to h2 − 2τh− 2λτh2 > 0. Hence

h >
2τ

1− 2λτ
.

For small λ, this is possible if h > 2τ .



Constant time gap control design

Paolo Falcone (CHALMERS) Adaptive Cruise Control July 5, 2013 31 / 40

Proof (Cont.)

Hence aω4 + bω2 + c > 0 if

1 a, b, c > 0

2 b < 0, a > 0, c > 0 and 4ac− b2 > 0, i.e., b2 − 4ac < 0

Distinguish the following two cases

1 b > 0 corresponds to h2 − 2τh− 2λτh2 > 0. Hence

h >
2τ

1− 2λτ
.

For small λ, this is possible if h > 2τ .

2 b < 0, a > 0, c > 0 and b2 − 4ac < 0 corresponds to

(
h2 − 2τ − 2λτh2

)2
− 4τ2h4λ2
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Proof (Cont.)
2 Simplify to obtain

By relaxing the inequality in aω4 + bω2 + c > 0, h ≥ 2τ follows.
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Proof (Cont.)
2 Simplify to obtain

λ <
4τh− h2 − 4τ2

8τ2h− 4τh2
,

λ <
− (2τ − h)

2

4τh (2τ − h)
.

By relaxing the inequality in aω4 + bω2 + c > 0, h ≥ 2τ follows.
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Proof (Cont.)
2 Simplify to obtain

λ <
4τh− h2 − 4τ2

8τ2h− 4τh2
,

λ <
− (2τ − h)

2

4τh (2τ − h)
.

Since λ > 0, it must be h > 2τ .

By relaxing the inequality in aω4 + bω2 + c > 0, h ≥ 2τ follows.

By 1) and 2) also follows that if h ≥ 2τ a λ can be found such
that |H(jω)| < 1.
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Note that

1 The previous condition does not guarantee
that ‖H‖∞ ≤ 1, h(t) > 0, ∀t ≥ 0 hold simultaneously.
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2 Necessary conditions for non-negativeness of h(t) are

a) The dominant poles of H(s) should not be complex conjugate
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Note that

1 The previous condition does not guarantee
that ‖H‖∞ ≤ 1, h(t) > 0, ∀t ≥ 0 hold simultaneously.

2 Necessary conditions for non-negativeness of h(t) are

a) The dominant poles of H(s) should not be complex conjugate
b) H(s) should not have positive zeros
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Example. A car is initially operating in speed control mode at 30
m/s, when a stalled car is detected 100 m ahead. The parameters of
the CTG law are λ = 1, h = 1 s, L = 5 m.



Transition logics

Paolo Falcone (CHALMERS) Adaptive Cruise Control July 5, 2013 35 / 40

Transition scenarios

1 Speed control −→Vehicle following. In, e.g.,
◮ Slower vehicle ahead
◮ Cut-in maneuver

2 Vehicle following −→Speed control. In, e.g.,
◮ Target lost
◮ Lane change
◮ Cut-out maneuver

Example. A car is initially operating in speed control mode at 30
m/s, when a stalled car is detected 100 m ahead. The parameters of
the CTG law are λ = 1, h = 1 s, L = 5 m. The initial spacing error is

δi = xi − xi−1 + L+ hẋi,

= −100 + 5 + 30 = −65,

and the initial relative velocity is ǫ̇i = ẋi − ẋi−1 = 30.
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Transition scenarios

1 Speed control −→Vehicle following. In, e.g.,
◮ Slower vehicle ahead
◮ Cut-in maneuver

2 Vehicle following −→Speed control. In, e.g.,
◮ Target lost
◮ Lane change
◮ Cut-out maneuver

Example. A car is initially operating in speed control mode at 30
m/s, when a stalled car is detected 100 m ahead. The parameters of
the CTG law are λ = 1, h = 1 s, L = 5 m. The initial spacing error is

δi = xi − xi−1 + L+ hẋi,

= −100 + 5 + 30 = −65,

and the initial relative velocity is ǫ̇i = ẋi − ẋi−1 = 30. According to the
CTG law u = − 1

h (ǫ̇i + λδi), the
acceleration u = −1(30− 65) = 35 m/s2 is demanded.
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3 the vehicle should brake as hard as possible to avoid a collision
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When a vehicle ahead is detected the transition logic has to decide
whether

1 the vehicle should use speed control

2 the vehicle should use spacing control, with a defined transition
trajectory

3 the vehicle should brake as hard as possible to avoid a collision

A range-range rate diagram can be used

Define range R and range rate Ṙ as in the picture below
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A typical R− Ṙ diagram is2
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The possible directions of motion are
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The line separating the speed and spacing control regions is given
by R = −T Ṙ+Rfinal
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The line separating the speed and spacing control regions is given
by R = −T Ṙ+Rfinal

The control law on this transitional trajectory is given by

u = −kp (x−R)− kd

(

ẋ− Ṙ
)
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During constant deceleration the trajectory in the R− Ṙ plane is a

parabola with equation R = Ramn +
Ṙ2

2D
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