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Lecture content

@ Motivation

Q@ Steering dynamics

@ Decoupling of lateral and yaw dynamics
@ Rear steering for yaw damping

@ Extension of the decoupling to arbitrary mass distribution

Note: The following notes have been extracted from

@ “Robust yaw damping of cars with front and rear wheel steering”, J.
Ackermann, W. Sienel. IEEFE Transactions on Control Systems
Technology, vol. 1, no. 1, March 1993
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Motivation

@ Rear steering available. How to use it?
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Motivation

@ Rear steering available. How to use it?

In

chose the velocity dependent pre-filter as

1+ Tp(v)s

F,.(s,v) :K(v)m,

where K < 0 at low speed for better maneuverability in, e.g.,
parking. At high speed K > 0.
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Motivation

@ Rear steering available. How to use it?

@ Decoupling the driver’s task of controlling the vehicle position
w.r.t. a desired path from the yaw response
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Motivation

@ Rear steering available. How to use it?

@ Decoupling the driver’s task of controlling the vehicle position
w.r.t. a desired path from the yaw response

Advantages

©® The driver has to focus on the lateral motion only. Disturbances on
the yaw dynamics are rejected by the rear-steering.

© The yaw damping can be varied without affecting the lateral
vehicle behavior
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Motivation

@ Rear steering available. How to use it?

@ Decoupling the driver’s task of controlling the vehicle position
w.r.t. a desired path from the yaw response
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Motivation

@ Rear steering available. How to use it?

@ Decoupling the driver’s task of controlling the vehicle position
w.r.t. a desired path from the yaw response
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Motivation

@ Rear steering available. How to use it?

@ Decoupling the driver’s task of controlling the vehicle position
w.r.t. a desired path from the yaw response

d d
o, Y e ok
8, : _B, s F, H —L _B,
Steering _“4 Steering _‘1/’
w e, 9, r [ r
F, 4T—» H —5 T F. H, — T

© Simple control design highlighting the properties of the yaw and
lateral response to the front and rear steering
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Q@ Motivation
Q@ Steering dynamics
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Steering dynamics

Assumption

The vehicle mass is distributed into two masses concentrated at the
front and the rear axle.
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Steering dynamics

Assumption

The vehicle mass is distributed into two masses concentrated at the
front and the rear axle.
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Steering dynamics

Assumption

The vehicle mass is distributed into two masses concentrated at the
front and the rear axle.
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In this case the inertia J and the mass m are related by

J = méﬂf
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Steering dynamics
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Steering dynamics

" 5

<

The linearized steering dynamics are given by

-l ) e
Pl | a1 ae T bar  bao or |’
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Steering dynamics

<

The linearized steering dynamics are given by

-l ) e
Pl | a1 ae T bar  bao or |’

where
a1 = —(¢r +cp)/mu, aia = —1+ (el —cply)/mv?,
asy = (coly —cply)/mlly, ase = —(c; 02+ Cfffc)/mvﬂrﬁf,
bii = c¢f/mu, bia = ¢ /mo,
b21 = cf/mﬁr, bzg = —cr/mﬁf.
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Steering dynamics

The characteristic polynomial of
,5’ _ ai1r a2 B + b1 bi2 0 f
r a1 Q22 T ba1  bao & |’

is given by

p(s) = wi + 2Dpwos + s>
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Steering dynamics

The characteristic polynomial of

)Lz ) e
Pl | a1 ae r bar  ba2 or |’

is given by
p(s) = wi + 2Dpwos + s>
where
9 crepl® +mu? (e b, — cply)
w =
0 m2v2l,L¢ ’

e(c,«&« + Cf@f)
2\/&«@ [eresl? + mu?(cply = cply)]
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Lecture content

Q@ Motivation
Q@ Steering dynamics

© Decoupling of lateral and yaw dynamics
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Decoupling of lateral and yaw dynamics

Theorem

The steering control law given by Hy(s) = % is decoupling. L.e.,
@ 7 and 05 are unobservable from ay,
@ ay is not controllable from J,.
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Decoupling of lateral and yaw dynamics

Theorem

The steering control law given by Hy(s) = % is decoupling. L.e.,
@ 7 and 05 are unobservable from ay,
@ ay is not controllable from J,.

Proof
@ Augment the state-space model by adding ) r=ef.

v
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Decoupling of lateral and yaw dynamics

Theorem

The steering control law given by Hy(s) = % is decoupling. L.e.,
@ 7 and 05 are unobservable from ay,
@ ay is not controllable from J,.

Proof
@ Augment the state-space model by adding ) r=ef.

@ Transform the state-space model to the new state vector [af 7 d¢],
where

aj = v(r+B)+ L

= u(r+anf+aer+ b11dy + b120,)
ef(a215 + agor + b215f) + bao0,
do(—B —Lyr/v+df), do=Leg/ml,

+

<
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Decoupling of lateral and yaw dynamics

Proof (Cont.)
@ Close the feedback loop with

Sf:wf—r
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Decoupling of lateral and yaw dynamics

Proof (Cont.)
@ Close the feedback loop with

Sf:UJf—T

The model resulting from steps 1) - 3) is

af di | 0 0 as d 0
— = = — — — | = - wy
7 do1 | doo  dos T 0 dao Oy
5 0 | -1 o0 5 1 0
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Decoupling of lateral and yaw dynamics

Proof (Cont.)

where
din = —leg/mul,
dor = —(crlyr —cply)/cplsl
dos = —cl/muly
d23 = CT/mEf

In conclusion
@ 7 and 05 can’t be observed from ay,

@ ay is not controllable from J,.
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Decoupling of lateral and yaw dynamics

In conclusion, the steering dynamics can be splint into the following
two subsystems
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Decoupling of lateral and yaw dynamics

In conclusion, the steering dynamics can be splint into the following
two subsystems

@ Lateral motion of the front axle

aj = dnay +dowy = ap(s) = Gr(s)Fy(s)ds(s)
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Decoupling of lateral and yaw dynamics

In conclusion, the steering dynamics can be splint into the following
two subsystems

@ Lateral motion of the front axle

aj = dnay +dowy = ap(s) = Gr(s)Fy(s)ds(s)

© Yaw motion

il 1 L[ e
Rk
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Decoupling of lateral and yaw dynamics

In conclusion, the steering dynamics can be splint into the following
two subsystems

@ Lateral motion of the front axle
df = dllaf + dowf = af(s) = Gf(s)Ff(s)(5s(s)

© Yaw motion

HEERIIARCIE
of of
0 b22 w
+ [ 10 } [ 5
with characteristic polynomial

pr(s) = w? +2Djwrs + s2,

and
Cr

14
(IJ%: ’_DI:%

mﬁf'

mﬁf
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Decoupling of lateral and yaw dynamics

Compare now the damping of the uncontrolled and the decoupled
systems. l.e., Dy vs. Dy.
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Decoupling of lateral and yaw dynamics

Compare now the damping of the uncontrolled and the decoupled
systems. l.e., Dy vs. Dy.

Set Dy = Dg and solve for v

9 20,0
Vy =

mﬁf(cfﬁf + 3¢.4y)
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Decoupling of lateral and yaw dynamics

Compare now the damping of the uncontrolled and the decoupled
systems. l.e., Dy vs. Dy.

Set Dy = Dg and solve for v

2 C%ETW
ve= m€f(cf€f + 3¢.4y)

For v < vy the decoupled vehicle has higher (better) damping
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Decoupling of lateral and yaw dynamics

Compare now the damping of the uncontrolled and the decoupled
systems. l.e., Dy vs. Dy.

Set Dy = Dg and solve for v

2 c%&ﬁz
ve= m€f(cf€f + 3¢.4y)

For v < vy the decoupled vehicle has higher (better) damping

A comparison of wy and w; provides the limit speed

Cr

Ve =4

mﬁf'
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Decoupling of lateral and yaw dynamics

Compare now the damping of the uncontrolled and the decoupled
systems. l.e., Dy vs. Dy.

Set Dy = Dg and solve for v

2 c%&ﬁz
ve= m€f(cf€f + 3¢.4y)

For v < vy the decoupled vehicle has higher (better) damping

A comparison of wy and w; provides the limit speed

Cr

w =1 .
Y mﬁf

For v < v,, the decoupled vehicle has lower natural frequency.
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Decoupling of lateral and yaw dynamics

Compare now the damping of the uncontrolled and the decoupled
systems. l.e., Dy vs. Dy.

Set Dy = Dg and solve for v

2 c%&ﬁz
ve= m€f(cf€f + 3¢.4y)

For v < vy the decoupled vehicle has higher (better) damping

A comparison of wy and w; provides the limit speed

Cr

w =1 .
Y mﬁf

For v < v,, the decoupled vehicle has lower natural frequency. Note
that v, is independent of the speed.
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Q@ Motivation
Q@ Steering dynamics
© Decoupling of lateral and yaw dynamics

@ Rear steering for yaw damping
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Decoupling of lateral and yaw dynamics

We found Dy < Dy at high speed. L.e., the decoupled vehicle has worse
damping at high speed
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Decoupling of lateral and yaw dynamics

We found Dy < Dy at high speed. L.e., the decoupled vehicle has worse
damping at high speed

We now design a rear steering controller
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Decoupling of lateral and yaw dynamics

We found Dy < Dy at high speed. L.e., the decoupled vehicle has worse
damping at high speed

We now design a rear steering controller

@ rendering D; independent of the speed,
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Decoupling of lateral and yaw dynamics

We found Dy < Dy at high speed. L.e., the decoupled vehicle has worse
damping at high speed

We now design a rear steering controller
@ rendering D; independent of the speed,
@ recovering the damping of the uncontrolled vehicle at high speed
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Decoupling of lateral and yaw dynamics

We found Dy < Dy at high speed. L.e., the decoupled vehicle has worse
damping at high speed

We now design a rear steering controller
@ rendering D; independent of the speed,
@ recovering the damping of the uncontrolled vehicle at high speed

Theorem

The rear steering control law
or = (U/v — kp)(w, — 1),

yields to speed independent eigenvalues of the yaw dynamics.
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Decoupling of lateral and yaw dynamics

Proof.
Plug 6, = ({/v — kp)(w, — r) into the decoupled yaw and controller
dynamics
r _ | d2—(¢/v—kp)baz dos r] L do |,
by -1 0 Sy 0o |
+ |: 0 bQQ(f/’U—k‘D) :| |: wyr :|
1 0 w,

O

v
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Decoupling of lateral and yaw dynamics

Proof.
Plug 6, = ({/v — kp)(w, — r) into the decoupled yaw and controller
dynamics
’f‘ o d22 e (K/U e k)D)bzg d23 r d21
{Sf]_[ -1 o Jlé T o |¥
+ |: 0 bQQ(f/’U—k‘D) :| |: wyr :|
1 0 Wy

The characteristic polynomial becomes

pr1(s) = wi; + 2Dwrrs + §°,

O

<
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Decoupling of lateral and yaw dynamics

Proof.
Plug 4, = ({/v — kp)(w, — r) into the decoupled yaw and controller
dynamics
’f‘ o d22 e (K/U e k)D)bzg d23 r d21
{Sf]_[ -1 o Jlé T o |¥
+ [ 0 bQQ(f/”U—k‘D) :| [ wyr :|
1 0 Wy

The characteristic polynomial becomes
pH(s) = w%l + 2D11LU[[8 aF 82,

with
kp [¢  kpwir

:7 mﬂf_ 2

O

<
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Lecture content

Q@ Motivation

Q@ Steering dynamics

© Decoupling of lateral and yaw dynamics
@ Rear steering for yaw damping

@ Extension of the decoupling to arbitrary mass distribution
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Decoupling with arbitrary mass distribution

Recall that the decoupling front steering control law has been derived
under the following
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Decoupling with arbitrary mass distribution
Recall that the decoupling front steering control law has been derived
under the following
Assumption

The vehicle mass is distributed into two masses concentrated at the
front and the rear axle.

Paolo Falcone (CHALMERS) Yaw Damping via Front and Rear Steeri July 8, 2013 20 / 24



Decoupling with arbitrary mass distribution
Recall that the decoupling front steering control law has been derived
under the following
Assumption

The vehicle mass is distributed into two masses concentrated at the
front and the rear axle.

The above assumption is equivalent to J = mfyl,
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Decoupling with arbitrary mass distribution
Recall that the decoupling front steering control law has been derived
under the following
Assumption

The vehicle mass is distributed into two masses concentrated at the
front and the rear axle.

The above assumption is equivalent to J = mfyl,

In case of arbitrary mass distribution
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Decoupling with arbitrary mass distribution
Recall that the decoupling front steering control law has been derived
under the following
Assumption

The vehicle mass is distributed into two masses concentrated at the
front and the rear axle.

The above assumption is equivalent to J = mfyl,

In case of arbitrary mass distribution

m = mi+mo, J:mlﬁf—l—mgﬁf 3
mily = moly, J=malil, +milil, -
J = mli4,
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Decoupling with arbitrary mass distribution
Recall that the decoupling front steering control law has been derived
under the following
Assumption

The vehicle mass is distributed into two masses concentrated at the
front and the rear axle.

The above assumption is equivalent to J = mfyl,

In case of arbitrary mass distribution

m = mi+mo, J:mlﬁf—i—mgﬁf 3
mily = moly, J=malil, +milil, -
J = mli4,
 m2l _oomJ
= J +me2’ 2= J + me2
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Decoupling with arbitrary mass distribution

Assume ¥ = 0 and small ;. Write the lateral and yaw dynamics as

Jr

G —L,

fr(a?“)

(=471, 20483

Paolo Falcone (CHALMERS) Yaw Damping via Front and Rear Steeri July 8, 2013 21 / 24



Decoupling with arbitrary mass distribution

Assume ¥ = 0 and small ;. Write the lateral and yaw dynamics as

[ =L L]

Recall that

fr(0) =0 frlay)/ap >0 ap=3d;— B

ar:_ﬁr 057':(57'_57'
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Decoupling with arbitrary mass distribution

Assume ¥ = 0 and small ;. Write the lateral and yaw dynamics as

[ = (o e )

Recall that
fr(0) =0 frlap)/ay >0 ap=2dr— B

a'r:_ﬁr aT:(sT_ﬁT

lyr
Introduce now 1 = 8 + -1 as state variable
v

mu(py +r— 4r) ] _ [ Elf _1& ] { frlay) ]

Jr
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Decoupling with arbitrary mass distribution

Assume ¥ = 0 and small ;. Write the lateral and yaw dynamics as

[ = (o e )

Recall that
fr(0) =0 frlap)/ay >0 ap=2dr— B

a'r:_ﬁr ar:(sr_ﬁr
617‘ .
Introduce now 31 = 3 + — as state variable
v

mv(51+r—%)]:[ 11 ]{ff(af)])

Jr Ef _Er fr (ar)
with
€f — .+ 01
ap =0 —pr—r y ap=—fr+T
v v
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Decoupling with arbitrary mass distribution

The dynamics of the yaw and the side slip of mass m; can be
rearranged as

{%]:[6/@7}? —e?/J} Hfng))]_{(l)]r
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Decoupling with arbitrary mass distribution

The dynamics of the yaw and the side slip of mass m; can be
rearranged as

{%]:[6/@7}? —e?/J} Hfng))]_{(l)]r

Observe that,
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Decoupling with arbitrary mass distribution

The dynamics of the yaw and the side slip of mass m; can be
rearranged as

=L e -6 )
Observe that,

@ the rear tire force f, has no direct effect on 1

Theorem
The front steering control law

5f—wf—r+r£f_gl

renders the yaw rate r unobservable from the from tire slip angle ;.
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Decoupling with arbitrary mass distribution

The dynamics of the yaw and the side slip of mass m; can be
rearranged as

=L e -6 )
Observe that,

@ the rear tire force f, has no direct effect on 1

Q@ f» has an indirect effect on 3y through r

Theorem
The front steering control law

5f—wf—r+r£f_gl

renders the yaw rate r unobservable from the from tire slip angle ;.
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Decoupling with arbitrary mass distribution

The dynamics of the yaw and the side slip of mass m; can be
rearranged as

B _ | ¢/mut, 0 frlag) | |1 .
7 L) J =4 )T fr(ar) 0
Observe that,
@ the rear tire force f, has no direct effect on 1

Q@ f» has an indirect effect on 3y through r
@ r enters linearly in the $; dynamics

Theorem
The front steering control law

5f—wf—r+r£f_gl

renders the yaw rate r unobservable from the from tire slip angle ;.
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Decoupling with arbitrary mass distribution

Proof.

Recall that ay = 6y — B1 — r#.
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Decoupling with arbitrary mass distribution

Proof.

Recall that ay =6y — B1 — r L. Differentiate ¥

L1
v

. by — 14
af = 5f—51—7‘f !

: L Ay =10
O = op frlen) +r—r=——
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Decoupling with arbitrary mass distribution

Proof.

Ly —

14
Recall that ay =6y — B1 — r L. Differentiate af

. by — 14
Ozf = (5f—51—7’f !

L 4 -t
= 5f—mff(af)+7“—7"

. 0 —
Plug 6y =wy — 7+ 7 I~ L in the expression of ¢y

. ;
by =wp— o frlay)

Paolo Falcone (CHALMERS) Yaw Damping via Front and Rear Steeri

July 8, 2013

23 / 24



Decoupling with arbitrary mass distribution
Observe that, under the

Assumption

The vehicle mass is distributed into two masses concentrated at the
front and the rear axle.

{1 = ¢y and the front steering control law reduces to the previous.
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