
XVII Scuola Nazionale di Dottorato – Bertinoro, 8-13 luglio, 2013

Longitudinal dynamics: appendixes

Mara Tanelli

mara.tanelli@polimi.it
http://move.dei.polimi.it/



Dipartimento di Elettronica, Informazione e Bioinge gneria

Appendix 1: experimental 
results (ABS)

The following slides are adapted from those used in the course
‘’Automazione nei mezzi di trasporto’’ 
(M.Sc. course at the Politecnico di Milano, Prof. Sergio M. Savaresi)
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Comparison of actuators
Pressure-tracking results (comparison)
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Slip-control results (example – advanced 
BBW actuator)

Panic-brake experiment with target slip at 5%
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Appendix 2: two -wheeled
vehicles
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Cars vs. Motorcycles
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References: 

Corno, Savarsi, Balas, Linear, Parameter-Varying Wheel Slip Control for Two-Wheeled Vehicles, IJRNC, 
2009.

M. Tanelli, M. Corno, I. Boniolo, S. M. Savaresi. Active Braking Control of Two-Wheeled Vehicles on Curves. 
IJVAS 2009.
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Braking Dynamics

Longitudinal dynamics is mainly influenced by the tyre characteristic and the load acting on
the tyre.
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The single corner model fails to account for the varying vertical load.
The two-wheeled longitudinal dynamics can be obtained by linearization of a multi-body
simulator

14 degrees of freedom and takes into account
phenomena like tire relaxation length, non linear
suspensions characteristics, tyre stiffness,
aerodynamics and rider’s attitude.

Linearization done symbolically
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Braking Dynamics Linearization

The dynamics between braking torque and wheel slip has been considered.

Out of the 28 modes only 7 are relevant to the considered dynamics: whic can be interpreted
with the following in-plane dynamics:

• one real pole: the wheel-slip pole also modeled by the single-corner model;
• one couple of complex poles: front wheel hop modes (15-17 Hz);
• two couples of complex poles: heave and pitch (2-3 Hz).
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LPV Wheel-Slip Control Synthesis – main result

LPV techniques allow to explicity take into account parameter dependence in the controller
synthesis (parameters: speed, slip)

LPV
controller

H
∞

controller
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TC generations...

Generation 1

Mainly (only) 
safety-oriented

No ride-by-wire

Minumum sensors
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Generation 2

Performance-
oriented!!!

Still no-ride-by-wire

Simple roll-angle 
detection

Generation 3

Ultimate-performances

Full roll-angle estimation

Ride-by-wire
Smooth feeling (“traction-control 

mode”)

+ “Gadgets” (wheelie, launch...)
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Appendix 3: Traction Control
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Black-box identification of engine-to-slip dynamics
for motorcycle traction control

Corno, M. and Savaresi, S.M .: Experimental Identification of Engine-to-
Slip Dynamics for Traction Control Applications in a Sport Motorbike. 
European Journal of control, vol.16, no.1, p. 88-108, 2010.

The control variables taken into account are the throttle set-point and spark advance
The controlled variable is the rear wheel slip 

Developing a first principles model of the dynamics would be very demanding as the dynamic is 
very complex (engine, transmission, wheel dynamics, pitch and ver tical dynamics 

....). 

Approach: black-box modeling
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The experiments were performed on a World-championship SBK motorcycle 
(1000cc 4-stroke 4-cylinder engine, with more than 200 HP). The motorbike is
equippedwith:

• an Electronic Throttle Body (ETB)
• an Electronic Control Unit (ECU) to control the throttle position and the engine spark-
advance;
• two wheel encoders to measure the rotational speed of the wheels; 
• an optical velocity sensor to measure the real longitudinal velocity of the vehicle chassis 
with respect to the road. 

Experimental set-up (I / O)
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Design of experiments

Tests on a long (3.5 km) straight dry asphalt patch:
1) the rider is asked to Trim the motorcycle to constant speed
2) the test is trigged by the driver with a button: At that point the ECU completely 

command overrides the driver, and the excitation signal is applied around the 
neighborhood of the initial condition. 

This experiment is non-trivial, but has the major advantage of being repeatable and providing the real 
dynamic behavior of the motorbike (and rider), on a real test-track (whereas test-rig experiments 

are in general affected by non-realistic conditions ).

Two different excitations are considered: 1) sine sweep 
2) sequence of steps
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Tests Protocol - example
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Black-Box Identification - spectrograms

Linear 
System

NonLinear 
System

Sine sweeps provide an immediate way to quantify the system nonlinearities.

The system is strongly nonlinear

throttle spark advance
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Black-Box Identification - Conclusions

traction control via throttle is doable.

Using ALSO spark-advance enalrges the bandwidth of th e traction-control loop 
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Remark
Longitudinal Wheel Slip Dynamics – sensitivity to ro ad surface

10
0

10
1

-50

-40

-30

-20

-10

0

10

frequency [Hz]

m
ag

ni
tu

de
 [

dB
]

 

 basalt tiles

wet asphalt (NVH)

brushed concrete

10
0

10
1

-300

-200

-100

0

frequency [Hz]

ph
as

e 
[°

]

1) There is a considerable
spread in terms of gain

2) There is a considerable
spread in term of phase

3) The worst conditions are 
those with low friction
surfaces (worst phase
loss)
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Slip control

• Remark: the closed-loop performance depend on the operating point
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