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Abstract

Output regulation refers to the class of control problems in which some out-
puts of the controlled system must be steered to some desired references, while
maintaining closed-loop stability and in spite of the presence of unmeasured
disturbances and model uncertainties. While for linear systems the problem has
been elegantly solved in the 70s, output regulation for nonlinear systems is still
a challenging research field, and 30 years of active research left open many fun-
damental problems. In particular, all the regulators proposed so far are limited
to very specific classes of nonlinear systems and, even in those cases, they fail
in extending in their full generality the celebrated properties of the linear reg-
ulator. The aim of this thesis is to make a decisive step towards the systematic
extension of the output regulation theory to embrace more general multivari-
able problems. To this end, we touch here three fundamental pillars of regula-
tion theory: the structure of regulators, the robustness issue, and the adaptation
of the control system. Regarding the structural aspects, we pursue here a de-
sign paradigm that is complementary to canonical nonlinear regulators and that
trades a conceptually more suitable structure with a strong internal intertwining
between the different parts of the regulator. For what concerns robustness, we
introduce a new framework to characterize robustness of regulators relative to
steady-state properties more general than the usual requirement asking a zero
asymptotic error. We characterize in this unifying terms a large part of the ex-

isting approaches, and we end conjecturing that general nonlinear regulation
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admits no robust solution. Regarding the evolution of regulators, we propose an
adaptive regulation framework in which adaptation is used online to tune the
internal models embedded in the control system. Adaptation is cast as a general
system identification problem, allowing for different well-known algorithms to

be used.
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Sommario

I1 termine “regolazione dall’uscita” (output regulation) si riferisce alla classe
di problemi della teoria del controllo in cui ad alcune uscite del sistema con-
trollato devono essere fatte inseguire delle traiettorie di riferimento desider-
ate, in presenza di incertezze sul modello e disturbi esterni non misurabili e
mantendendo la stabilita del sistema complessivo. Nonostante per la classe
dei sistemi lineari il problema sia stato elegantemente risolto negli anni 70, la
regolazione dall’uscita per sistemi nonlineari rappresenta ancora un campo di
ricerca alquanto ostico, in cui oltre trent’anni di ricerca attiva hanno lasciato
aperti molti problemi fondamentali. Tutte le soluzioni proposte fin'ora, infatti,
si limitano a classi specifiche di sistemi nonlineari, ed anche in tali casi fallis-
cono nell’estendere, nella loro interezza, le rinomate proprieta del regolatore
lineare. Lo scopo principale di questa tesi e fare un decisivo passo avanti verso
’estensione sistematica della teoria della regolazione verso classi piu generali
di sistemi nonlineari, sia dal punto di vista applicativo, sia da quello teorico.
A tal fine in questa tesi vengono toccati tre pilastri fondamentali della rego-
lazione: la struttura del regolatore, il problema della robustezza e la questione
dell’adattamento ed evoluzione del regolatore. Per quanto riguarda gli aspetti
strutturali, viene proposto un paradigma di progetto del regolatore comple-
mentare a quelli canonici, che presenta una struttura piu consona ad eventuali
estensioni della teoria, al prezzo pero dell’introduzione di un forte legame tra

le varie parti del regolatore, che rende impossibile il loro progetto sequenziale e



separato. Per quanto riguarda la robustezza, viene introdotto un nuovo “frame-
work” in cui e possibile formalizzare e caratterizzare concetti di robustezza legati
alle performance dei regolatori relativamente a proprieta asintotiche piu gener-
ali della condizione canonica richiedente un errore di regolazione nullo a regime.
Vengono dunque caratterizzati un questo framework diversi tra i regolatori svilup-
pati negli ultimi vent’anni, e viene proposta una congettura “negativa” che af-
ferma che nel caso nonlineare generale nessun regolatore ¢ robusto. Per quanto
riguarda il progetto di regolatori che si auto-adattano, viene proposto un frame-
work teorico in cui il modello interno presente nel regolatore viene adattato on-
line in autonomia sulla base delle uscite misurabili. Il problema dell’adattamento
€ posto come un probema di identificazione dinamica, permettendo 1'utilizzo di

diverse tecniche esistenti.
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Introduction

N 1857, a 21 years old Mark Twain was beginning his training as a steam-
boat pilot on the Mississippi river, under the command of Mr. Horace Ezra
Bixby. Several years later, while writing in the memoir “Life on the Missis-

sippi” (Twain, 1883) about how discouraging was to realize how much he had to

learn, he reported his mentor as saying:

“You only learn the shape of the river, and you learn it with such absolute
certainty that you can always steer by the shape that’s in your head, and
never mind the one that’s before your eyes.”

Mr. Bixby was arguing that any good pilot needs to perfectly know the shape of
the river, to avoid being fooled by darkness, mist or moonlight shadows during
nocturnal navigation. In its essence, Mr. Bixby’s intuition hides the Internal
Model Principle, informally stating that an internal representation of the “outside
world”, of the task being executed, and of the agent itself is necessary for a smooth
and robust operation. Not surprisingly, the concept of “internal model” and the
related principles pervade many fields of science (Huang et al., 2018), ranging
from biology (Sontag, 2003), cognitive science (Grush, 2004) and neuroscience
(Wolpert et al., 1998) to control theory and robotics (Isidori, 2017), and they are
intimately related with the concept of “knowledge” that lies at the base of any
adapting and learning process.



Many studies in neuroscience support the idea that the behaviors of animals
and humans are regulated by internal models, refined day after day in the recur-
rent execution of “similar” tasks in “familiar” environments (Miall et al., 1993;
Wolpert et al., 1998; Schubotz, 2007). Sensorimotor integration, the transforma-
tion of sensory stimuli into motor actions, is perhaps the most well studied func-
tion of the nervous system with an internal model-based perspective (Miall et al.,
2000; Kawato et al., 2003; Jeannerod, 2006; Schubotz, 2007). Advanced motor
gestures, such as hitting a baseball or skiing on moguls, require an exquisite
spatio-temporal precision, that is simply not achievable by just sequencing fast
“reflexive” corrections (i.e. by pure feedback control) due to sensorimotor delays
and noise and limited resolution of the sensory apparatus (Wolpert et al., 1998).
A combination of sensory-driven feedback and predictive “feedforward” actions,
incorporating internal models of the environment, of the task, and of the sen-
sorimotor dynamics, is what makes all human-interest operations possible. The
internal model principle, moreover, is not confined to the sensorimotor domain,
yet it is thought as unifying concept to study higher cognitive and social abili-
ties, including for instance planning, reasoning, imitation and cooperation (Frith
et al., 2000; Grush, 2004; Schubotz, 2007).

The branch of control theory that developed around the concept of internal
model is known as “Output Regulation” (Isidori, 2017), and how internal models
can be constructed, adapted and exploited, in the formal context of nonlinear
output regulation is, in a nutshell, the subject of this thesis. The thesis is divided
in three parts: the first part, subdivided in three chapters, is dedicated to the
theory of output regulation; the second part, subdivided in two chapters, con-
cerns the relation between system identification and control, with an accent to
observer design; the last part, subdivided in two chapters, is dedicated to the
design of adaptive regulators.

The first chapter of the thesis aims at introducing the reader to the current
state of the art of output regulation, with an accent on the approaches that have
influenced more strongly our work. The second chapter focuses on the limits of
classical approaches and on the structural problems that necessarily arise in the
design of a regulator when we switch from linear to nonlinear systems. In par-
ticular, we point out as a “chicken-egg dilemma” arises in the solution of general
nonlinear regulation problems, stating that if we insist in separating a regulator

in an “internal model unit” and a “stabilizer” there is no way, in general, to tell
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which one has to be fixed first. We thus reinterpret previous approaches as at-
tempts to avoid dealing with the dilemma, trading feasibility with a consequent
loss of generality. In the last part of the chapter we give conditions under which
a so-called “post-processing” regulator exists that can deal with the chicken-
egg dilemma for classes of systems going beyond those treatable by the current
literature. The third chapter concerns instead the robustness issue. We ana-
lyze the necessary conditions (such as the internal model principle) of the exis-
tence of a regulator in case the exosystem is described by a differential inclusion,
thus extending the “non-equilibrium theory” of (Byrnes and Isidori, 2003). We
then propose a nonlinear regulator based on low-power high-gain observers and
on immersion arguments that can guarantee a certain degree of robustness for
particular classes of nonlinear problems, extending the “structural robustness”
framework of (Byrnes et al., 1997a). Lastly, we build a new formal framework
in which robustness of regulators can be characterized in topological terms and
relatively to arbitrary steady-state properties. We re-frame in this context many
well-known regulators and we point out how robustness of asymptotic regula-
tion is, in a general nonlinear case, idealistic.

The second part of the thesis is dedicated in presenting our approach to adap-
tation, with applications that, for simplicity, are directed towards the adaptive
observation theory. Adaptation and learning are approached as system identifi-
cation problems, in a deterministic setting tailored on control. To fix a common
playground in which control and identification can coexist, in the first chapter
of this second part we propose a framework where to reformulate the “recur-
sive” system identification problems in system theoretical terms, with a conse-
quent characterization of the identification algorithms in terms of stability the-
ory. In particular, fundamental notions and requirements are defined and then
proved to hold for some relevant classes of identification schemes, such as con-
tinuous and discrete least-squares, nonlinear “mini-batch” algorithms and recur-
sive wavelet expansions. Emphasis is put on “universal approximators” and, by
leveraging Wavelet theory, on the multiresolution aspect of learning: coarse traits
represent solid knowledge with slow learning dynamics, while details are more
volatile and subject to quicker change. What is interesting in multiresolution
itself, is that it also impacts in terms of analogy and generalization as, roughly,
the same “coarse” skills that allow Mark Twain to drive a boat on a river will be

useful to track a hiking trail. In the second chapter, the theory is applied to high-
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gain observers, where the problem of observing an unknown nonlinear system
in canonical form is taken on in the proposed framework.

The third part is dedicated to the design of adaptive solutions to output regu-
lation problems. Here the results of control theory and identification presented
in the previous chapters merge into control systems that learn, adapt and ex-
ploit an internal model of the world to achieve at best the regulation goal. In
the first chapter of this third part a general framework is proposed to deal with
nonlinear continuous-time regulation problems, and the concept of “class-type”
internal models is introduced to address the structural issues necessarily conceal-
ing behind the design of nonlinear internal models and feedback control. Some
cases studies that cover relevant classes of systems are then presented, showing
how the proposed framework can embrace state-of-art regulation problems and
more. The second chapter of this last part concerns, instead, a different approach
to output regulation for linear systems, where discrete-time identifiers are used
on top of a continuous-time internal model. In this framework the problem of
general multivariable adaptive linear regulation is solved, with a design that, up
to the author’s knowledge, is the first boasting such level of generality.

Overall, the approach to adaptive regulation pursued in this thesis is based
on an exquisite mixture of control and identification, all framed in the formal
framework of control theory and where the key to success has to be sought in the

synergistic design of the different components.



Part I

Output Regulation






Output Regulation of Linear and

Nonlinear Systems

N control theory the world is described in terms of systems of differential

I equations, whose solutions model the time evolution of the different phe-
nomena that take place. The systems that populate the world are defined

by an internal state, containing all the information sufficient to describe the sys-
tem. The time evolution of the state may be affected by system’s inputs and may
be observed by the rest of the world throughout system’s outputs. Output reg-
ulation is the branch of control theory that studies how, given a system, some
of its inputs (the control inputs) can be chosen to make some of its outputs (the
regulated outputs) to follow given reference behaviors, despite the presence of ex-
ogenous antagonist inputs (the disturbances) affecting the system and without the
perfect knowledge of the controlled system itself. The act of making the regu-
lated outputs to follow the reference behaviors is called tracking, eliminating the
effect of disturbances from the regulated outputs is called disturbance rejection.

Output regulation refers thus to the simultaneous ability of tracking references



while rejecting disturbances. the ability to achieve that goal “without the perfect
knowledge of the controlled system” is a fundamental property (real-world systems
cannot be known perfectly), which is referred to as robustness.

In line with the control theoretical vision of the world, the most interesting
class of output regulation problems is those where the references and the dis-
turbances are generate by an autonomous (i.e. without inputs) system, which is
generally referred to as the exosystem. The exosystem thus describes the struc-
ture of the outside world the controlled system interacts with. Locating the exact
birth of output regulation is not an easy task, though the first significant ex-
ample can be attributed to the famous PID (Proportional Integral Derivative)
controller, developed in the 30s and celebrated for its robustness property. The
PID is currently used to cope with constant references and disturbances, and its
robustness is a consequence of the fact that the integral term embeds an internal
model of the process that generates all the possible constant signals', that is, an
integrator. It can be shown, indeed, that when the PID is applied, while the pro-
portional and derivative terms vanish with the regulation error, the integral term
converges to the ideal constant input (called the error-zeroing input) that makes
invariant the set in which perfect tracking takes place, and this convergence is
not affected by the plant’s parameters as far as stability is not broken (and this
is, in essence, robustness). This fact knew a rigorous generalization to arbitrary
linear controlled systems and exosystems (thus to arbitrary references and dis-
turbances described by finite combinations of harmonics) in the mid 70s, in the
seminal works of Francis and Wonham (Francis and Wonham, 1975, 1976; Fran-
cis, 1977). This result, known under the name of Internal Model Principle, is one
of the most popular principles in control theory, and informally states that every
linear regulator that solves the problem of linear output regulation robustly, neces-
sarily includes an internal model of the system that generates the ideal error-zeroing
input.

Interesting enough, for linear systems the aforementioned system that pro-

duces the error-zeroing input coincides with the exosystem (or, more precisely,

1 As a matter of fact, if we define the system

where e(t) denotes the regulation error, then the integral term of the PID can be written as
kin(t), for some k; € R. When perfect tracking holds (i.e. e(t) = 0), then # fulfills (¢t) = 0,
whose solutions are constants ranging in the whole R, as so does 7(0).
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with its largest cyclic component). Although incredibly powerful and elegant,
this perfect matching between exosystem and internal model inexorably breaks
down as soon as nonlinearities come into play. As we will see in the next chap-
ters, the knowledge of the exosystem is far to be sufficient to fit into a nonlinear
internal model principle even for very simple systems. The goal of this chap-
ter is to introduce the reader to the state of the art of output regulation of linear
and nonlinear systems, presenting the main results and control designs currently

available in the literature.

1.1 Output Regulation of Linear Systems

This section is dedicated to a brief recap of the output regulation for linear sys-
tems, as it is instrumental to understand and interpret the nonlinear framework.
For brevity, we give here a simple reinterpretation of the main results of Francis,
Wonham and Davison (Francis and Wonham, 1975, 1976; Francis, 1977; Davi-
son, 1976), sometimes sacrificing rigor and generality to underline and magnify

the features of interest.

1.1.1 The Steady State of a Linear System

As a preliminary step we present here a characterization of the concept of steady
state for linear systems. We consider a cascade of the form (we omit here and

everywhere else the time dependency when not strictly necessary)

w = Sw

. (1.1)
z = Fz+4+Yw,

of the system w onto the system z, where w takes values in R™, z € R™, and
where S, F' and ¥ are matrices of appropriate dimensions with elements in R.

The cascade (1.1) is characterized by the following proposition.

Proposition 1.1. If and only if o(S) N o(F) = 0, there exists 1 € R™*™ such that
the set

I
graphIl = {(w,z) € R™*" : z =lw} =Im ( H”) (1.2)



is forward invariant? for (1.1).

Proof. If and only if o(S) No(F) = ), the Sylvester equation
S — FIl =3, (1.3)

admits a unique solution II € R™*"_ Let Il in (1.2) be the solution to (1.3). To
prove sufficiency, let v € Imcol(,,,, IT). Then, for some w € R™, v = col(w, [Tw),

and using (1.3) yields

S 0 Sw Sw I,
v = = = Sw,
<Z F) (Zw + Fﬂw) (HSw) ( II )

which, for the arbitrariness of v, proves that

(& ) () ()

Hence, forward invariance of (1.2) follows by (Basile and Marro, 1992, Thm.
3.2.4). To prove necessity, suppose that graphll is forward invariant, and pick
an initial condition (wy, z9) € graphIl. Then z; = ITwy, and the unique solution
(w, z) to (1.1) originating at (wy, z9) necessarily satisfies z(¢) = ITw(t). Hence, z
also fulfills

z2 = Ilw = [1Sw
and

Z=Fz+4Yw=(FII+ X)w.

From the arbitrariness of w, the latter equations yield (1.3), which implies o(S)N
o(F)=10. [ ]

The result of Proposition 1.1 is particularly interesting when S is simply sta-
ble and F' Hurwitz (see the notation section for the terminology). As a matter of

fact, if we define the error variable

z .=z — lw,

2See Section A.2.
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then, in view of (1.3), we obtain
F=Fz+Yw—TSw=F7+ (FII+ %~ [S)w = F?,

i.e. the set (1.2) is also globally exponentially stable. As a consequence, asymp-

totically the state z(t) will approach the signal ITw(t), and we write, symbolically,
z(t) — Tw(t). (1.4)

If S is simply stable, then w(t) is a linear combination of a finite number of
harmonics and IT always exists since o(S) N o(F) = 0 trivially holds. In this
case the interpretation of (1.4) thus coincides with the usual notion of the steady
state of a linear system: a stable linear system excited by a linear combination of
harmonics, asymptotically oscillates as a linear combination of the same harmonics.
The function ¢ — Ilw(t) represents, indeed, the forced response of the linear
system z and, in this respect, it is worth noting that II might exist as well also if
F is not Hurwitz, as in view of Proposition 1.1 it suffices to have o(S)No(F) =0
(thus, in particular, if F' has all the eigenvalues with positive real part, II will
always exist). This means that, if (1.1) is properly initialized in the set (1.2), the 2
subsystem can have non-trivial bounded trajectories even if arbitrarily unstable.
Finally, we also underline how the necessity of the condition ¢(S)No(F) = ()
for the existence of a steady state and for its attractiveness has the nice interpre-
tation of a non-resonance condition: if S and F' share some eigenvalue, then, even
if both matrices are stable, there exist solutions that oscillate with an amplitude
increasing with time, and such trajectories explode to infinity, thus violating in-

variance of graph II.

1.1.2 The Internal Model Principle

We present in this section a slightly informal adaptation of the linear internal
model principle. For further details, and a full rigorous treatise, the reader is
referred to (Francis and Wonham, 1975, 1976; Francis, 1977).

In this section we will consider a plant® described by linear equations of the

>We will often use the historical term “plant” to refer to the controlled system.
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form
z = Ax+ Bu+ Pw

y = Cx+Quw (1.5)

with state z € R", control input v € R™, measured output y € R™ and with w €
R™ that represent the exogenous signals acting on the system, such as references
and disturbances. The matrices A, B, P,C, () are real matrices of appropriate

dimension. We associate to (1.5) the regulation errors
e:=Cur+ Q.w € R"™ (1.6)

defined as the difference of the regulated outputs C.x and the references —Q.w,
being C, € R"*" and @), € R"*" such that Im ). C Im C.,. Finally, we make the
assumption that the exogenous input w is generated by a linear exosystem of the
form

W = Sw. (1.7)

In this framework, the (linear) output regulation problem reads as follows: find
a regulator of the form
T, = Acxc + Hcy

(1.8)
u = K.+ Kyy7

with z. € R™ for some n. € Nand A, H,, K., K, matrices of appropriate dimen-
sion, such that the closed-loop system (1.5), (1.7), (1.8) satisfies:

1. The origin of the subsystem (x, z.) with w = 0 is asymptotically stable.
2. Each solution to the closed-loop system (with w any solution to (1.7)) satis-
fies
lim e(t) = 0. (1.9)
t—o00
Let z := (z,x.) and n, := n + n.. Then, by defining

b A+ BK,C BK, .. P+ BK,Q
o H.C A, o H.Q

we obtain a cascade of the form (1.1). Let us assume that S is simply stable,
and suppose that the regulator x. solves the output regulation problem. Then

condition 1 implies that F' is Hurwitz, so as there exits II € R"=*" satisfying
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the Sylvester equation (1.3), whose graph is asymptotically stable for the closed-
loop system (w,z). Let us partition II as IT = col(IL,,II.), with II, € R™"
and II, € R"*™ . The Sylvester equation (1.3) implies that, by letting I' :=
K II. + K,CII, + K,Q, then necessarily

IS = All, + BI' + P (1.10)
holds. Condition 2, namely e(t) — 0, also implies that
CLIL, + Q. = 0. (1.11)

Equations (1.10)-(1.11) are called the regulator equations, and what said until now
can be rephrased as: if x. solves the problem of output regulation then necessarily
there exists (I1,, ") € R > x R™*"™ solving the regulator equations (1.10)-(1.11).

Now, the signal ['w(t) has to be interpreted as the ideal error-zeroing input,
i.e. the feedforward action that makes the set in which e vanishes invariant. By
definition of I', and by invariance of graph II, if the regulator z. solves the output
regulation problem, then necessarily it must be able to generate all the possible
outputs u* of the system

= Sw
*

1.12
uw = Tw. ( )

Although from the definition of I' we have that, in principle, u* could be gener-
ated by only using the static component Ky, this property would be lost at front
of any slight variation of any of the plant’s matrices from the nominal value used
to tune K, (for further detail the reader is referred to (Francis, 1977)). Thus, if
a robust design is sought (i.e. a design that is still valid if some of the matrices
slightly deviate from the nominal value), then necessarily u* must be given by
the term K.z, and K,y is rather to be compensated. As a consequence, the reg-
ulator x. must embed a subsystem that generates all the solutions to (1.12), and

this property is essentially what is known as the internal model principle.

1.1.3 The Linear Regulator

We present here a re-adaptation of the linear regulator originally proposed by

Davison in (Davison, 1976). The reader is referred to that paper for further de-
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tails. We consider the same class of systems (1.5), (1.6), (1.7), and from now on

we will assume the following;:
Assumption 1.1. The following holds:
1. S is simply stable.
2. The pair (A, B) is stabilizable, the pair (C, A) is detectable and the following

non-resonance condition holds:

A-)M B
rank ( ) =n+n,, VA € a(S).
C. 0

3. The regulation error e belongs to the measured outputs y, i.e. we can write

e=(a) e (2)

for some C, € Rw=)x" gnd , € Rrw—ne)xn,

Remark 1.1. The assumption of S being stable is not necessary, unless bound-
edness of the closed-loop trajectories is explicitly included in the problem state-
ment. As a matter of fact, the linear regulation theory would equally work also if
S contains unstable modes, with the constraint (1.9) possibly implying the exis-
tence of unbounded closed-loop trajectories. Nevertheless, to be consistent with
the nonlinear regulation theory, and with the forthcoming adaptive results, we
decided to keep boundedness of w(t) as a standing assumption from the begin-

ning. A

We augment the plant with the system
i = ®n + Ge, (1.13)

with state € R", being n,, := n.n,,, and with

I, 0
0 I,
® = : G .=
0 I, 0
—col,, —cily, e —Cny—11n, I,
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where all the 0 block are of dimension n, and the coefficients ¢; are such that the

characteristic polynomial of S reads as
ps(\) =A™ + ¢y N T+ e A+ o, (1.14)

Remark 1.2. We observe that equation (1.14), expressing the fact that the charac-
teristic polynomial of the exosystem matrix S coincides with those of ®, is what
confer the internal model property on the system (1.13). In fact, (1.14) implies that

any mode of the exosystem is also a mode of the system (1.13) whene=0. A

We refer to the system 7 as the internal model unit, as up to a change of coor-
dinates, and with e = 0, it coincides with n. copies of the exosystem (1.7).

Directly from point 2 of Assumption 1.1 it follows that the cascade (z,n) is
stabilizable. We then define a second system whose role is to stabilize the cascade

(x,m), when w = 0. For, we let n; € N and we define the system

é = A£§+Hnn+Hyy

(1.15)
= ng + Knn + Kyy7

with state ¢ € R"¢, and where A¢, H,, H,, K¢, K,, K, are real matrices of appro-

priate dimension such that the matrix

A+ BK,C BK, BK;
F=| ac O Opyene (1.16)
H,C H, A

is Hurwitz.

The regulator z. := (7,&), depicted in Figure 1.1, has the form (1.8), and the
following proposition shows that it solves the output regulation problem for the
plant (1.5).

Proposition 1.2. Let Assumption 1.1 be fulfilled, then the regulator (1.13), (1.15)
solves the output regulation problem relative to the system (1.5), (1.6), (1.7).

Proof. By letting 2 := (z,7,¢) and n, := n + n, + ng, the closed-loop system has
the form (1.1), with F' given as in (1.16) and ¥ = col(P + BK,Q, GQ., H,Q).
As F'is Hurwitz and S is simply stable, Proposition 1.1 yields the existence of a
matrix II € R"=*" such that graphII is forward invariant for (w, z). Let partition
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w = Sw

Y
T = Ar + Bu + Pw e N i = ®n + Ge
» e=C.xr+ Q.w Ya
ya:Cax_l_Qaw
U
n
£ = A&+ Hpm+ Hy

A A A

u = K&+ Kn+ Ky,

Figure 1.1: Block-diagram of the closed-loop system.

IT as IT = col(Il,, I1,, IT¢), with IT, € R™*"«, II, € R™*™ and Il € R"*", and let
II, := C.II, + Q.. Af F'is Hurwitz, graph Il is also globally attractive and, hence,

it suffices to show that II. = 0. Equation (1.3), in particular, gives
I1,,S = @11, + GII..

Let us further partition II,, as II,, = col(IL,,, IL,,, ..., 1I,, ), with the matrices II,,

of appropriate dimension. From the structure of ®, we obtain

I, S =11 Vi=1,...,np—1, (1.17)

i Mi+1)

and

M., S = cially, +1L,. (1.18)
i=1

Further developing (1.17) yields

IT,, =11, 5", Vi=2 ..., Ny,
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and using (1.18) we obtain

i=1 =1

Hnlsnw — Hnan = Z Ciflﬂnlsiil + He — Hnl (Z Cilsil) + He-
Solving for I, yields
He = HT]l (Snw + an_lsnw—l —+ 4 clS + COInw) . (119)

In view of (1.14) and the Cayley-Hamilton Theorem, (1.19) implies

and the claim follows. |

We close the section, by briefly recalling the main properties of the linear
regulator (1.13), (1.15):

P1 Robustness: the linear regulator is structurally robust, namely output regu-
lation is achieved with the same regulator for any choice of P and () and for
any perturbation of A, B and C' that does not destroy closed-loop stability
and linearity. In particular, if A, B, and C are subject to parameter uncer-
tainties, then if closed-loop stability holds for a nominal triple (A, B, C), it
also holds for sufficiently small perturbations of it. Moreover, we observe
that P, (), the solutions (II,,I") of the corresponding regulator equations
(1.10)-(1.11), and the steady-state matrix II, in general play no role in the
regulator synthesis, and the internal model unit depends exclusively on the
exosystem. This, in turn, allows us to conclude that, as long as closed-loop
stability is preserved, no perturbation of (A, B, C') can break the asymptotic
property of e = 0. For a more formal and in-dept discussion of robustness,

the reader is referred to Chapter 3.

P2 Necessity of the exosystem: on the other hand, the perfect knowledge of
the exosystem is a key requirement to ensure output regulation. The lin-
ear regulator gives, indeed, no robustness with respect to perturbations of
the exosystem, in the sense that any arbitrarily small perturbation of S will

reflect in a non-zero asymptotic error. We also observe that knowing the
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P3

P4

exosystem does not mean knowing w(t), yet only knowing the class of sig-
nals to which the ideal error-zeroing input u* = I'w(t) will belong to. This fact
will be a key observation in the adaptive framework presented in Chapter
6.

Independence of 1 from &: while the design of the stabiliser depends on
the internal model unit, as it is supposed to stabilize the cascade (z,7), the
design of the internal model unit 1 can be done beforehand and indepen-
dently on the stabiliser ¢ (indeed 7 only depends on the exosystem). As we
will see in a while, this property that permits a sequential design of the reg-
ulator is inexorably lost if a general nonlinear regulator is sought. Linearity
is of course decisive in guaranteeing this independence; as a matter of fact,
while the matrices ® and G do not depend on the definition of (1.15), the
matrices II and I' do. Linearity of the exosystem and of the plant, though,
imply that regardless what stabilizer is chosen, the ideal error-zeroing in-
put I'w will anyway satisfy (1.7), thus making the dependency on £ fading

away.

Multivariableness: The approach is structurally multivariable with the
only requirement (implicit in the non-resonance condition of Assumption
1.1) that the number of inputs is larger or equal than the number of regu-
lation errors. The multivariable case naturally motivates a regulator struc-
ture in which the internal model post-processes the error (see Figure 1.2),
namely internal models are put in cascade to the plant with the errors as

input.

Plant Int. Model [—

Stabilizer

Figure 1.2: Post-Processing Internal Model.

18



1.2 Output Regulation of Nonlinear Systems

Output regulation of nonlinear systems is nowadays an active and definitely
open research field. This section is devoted to present, in simplest possible terms,
a state of the art of the most consolidated approaches to nonlinear output regu-

lation.

1.2.1 The Framework of Output Regulation

We consider continuous-time nonlinear systems described by differential equa-

tions of the form
T = f(w,x,u)
(1.20)
y = h(w, ),
with state x € R", control input u € R™, measured outputs y € R"™ and with
w € R™ that represents exogenous signals, such as references to be tracked and
disturbances to be rejected. As a standing assumption, in the whole chapter we

suppose that w is generated by an exosystem of the form
w = s(w). (1.21)
Associated to (1.20), there is a set of n. > 0 regulation errors defined as
e = he(w, ), (1.22)

with h, : R™ x R" — RP, that represent the errors between the regulated vari-
ables and the corresponding references, or selected state variables on which the
steady state effect of the exogenous variables should be eliminated. As a second
standing assumption, we assume e to belong to the set of measurable outputs.
Namely, we suppose that h(w,z) = col(h.(w,z), ho(w,z)), where y, = hq(w, )
represents some additional measurements that are not required to vanish in
steady state but that can be useful for stabilization or other purposes. All the pre-
vious functions are assumed to be sufficiently smooth with a degree of smooth-
ness that will be clear from the context.

In this framework we define the problem of e-approximate output regulation
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as follows: find an output feedback regulator of the form
(1.23)

possibly e-dependent, with state . € R"¢, such that:

P1 Stability: The origin of the interconnection (1.20), (1.23) with w = 0 is
asymptotically stable with a domain of attraction X x X. C R™ x R" that
is an open neighborhood of the origin.

P2 Boundedness: There exists W C R™ such that the closed-loop system
(1.20), (1.21), (1.23) is uniformly bounded from* W x X x X..

P3 Regulation: Each solution to the closed-loop system (1.20), (1.21), (1.23)

originating in W x X x X, satisfies

limsup |e(t)| < e.

t—o00

If X coincides with R", we say that the problem is solved globally, otherwise we
say that the problem is solved locally. If given each X C R" it is possible to
find a possibly X-dependent regulator of the form (1.23) that solves the problem
in X, we say that the problem is solved semi-globally. If ¢ = 0, we refer to the
problem as the asymptotic output regulation problem, and a regulator that solves
it is called an asymptotic regulator or it is said to achieve asymptotic regulation for
(1.20), (1.21). Finally, we talk about the practical regulation problem whenever,
given any € > 0, there exists a regulator of the form (1.23) that solves the e-
approximate output regulation problem. Practical regulation is subject to the

same taxonomy in terms of local, global and semi-global terms.

1.2.2 A Brief Overview of Nonlinear Regulation: From Local to
(Semi-)Global

Nonlinear versions of the internal model principle have at first appeared in a

local setting in the seminal papers (Isidori and Byrnes, 1990; Huang and Rugh,

“Namely there exists a compact set M C R™=*"*" and a 7 > 0 such that R,, , . (W x X x
X.) C M.
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1990; Huang and Lin, 1994). In (Isidori and Byrnes, 1990), in particular, the au-
thors presented necessary and sufficient condition for local regulation and pro-
vided an extension of the concept of steady state to nonlinear systems based
on the center manifold theory (Khalil, 2002). The early 90s knew a quite large
proliferation of local approaches to nonlinear output regulation, mainly based
on linearization (Huang and Lin, 1994; Huang, 1995; Byrnes et al., 1997a) or
feedback-linearization (Khalil, 1994), and with an ideal error-zeroing input that,
however, was still supposed to be generated by a linear system (see also (Byrnes
et al.,, 1997b) for a complete treatise of structurally stable local regulation in
this setting and (Marconi and Isidori, 2000) for a geometric perspective and for
a mixed design of feedforward actions and internal models). The late 90s and
early 2000s, instead, knew a considerable trend toward the extension of the local
approaches to global (Khalil, 1998; Serrani and Isidori, 2000) and semi-global
(Serrani et al., 2001; Isidori et al., 2002; Ding, 2003; Huang and Chen, 2004)
settings. All these designs, though, were based essentially on the same linear-
ity assumption of the internal model (Huang, 2001). A purely nonlinear theory
for non-local output regulation appeared only in 2003, in the pioneering papers
(Byrnes and Isidori, 2003, 2004), where the concept of nonlinear steady state
and a purely nonlinear internal model principle have been re-framed in the con-
text of non-equilibrium theory (Byrnes and Isidori, 2002; Byrnes et al., 2003).
The “Byrnes-Isidori” high-gain design proposed in (Byrnes and Isidori, 2004), in
particular, is one of the most celebrated regulator, which knew several further
developments (Delli Priscoli et al., 2006; McGregor et al., 2006; Isidori et al.,
2012; Forte et al., 2017), and which is still nowadays playing a key part in recent
advances. Few years later another milestone design, the Marconi-Praly-Isidori
regulator, appeared in (Marconi et al., 2007), leveraging the theory of nonlinear
Luenberger observers (Andrieu and Praly, 2006). This latter approach, less con-
structive yet more general than the Byrnes-Isidori one, has been complemented
in (Marconi and Praly, 2008a) in a constructive practical regulation framework,
and has been the main subject to recent extensions to some classes of multi-
variable nonlinear systems (Astolfi et al., 2013; Wang et al., 2016, 2017; Pyrkin
and Isidori, 2017). Another construction (that is referred here as the Chen-
Lu-Huang regulator), perhaps more general than the Byrnes-Isidori regulator,
even though applied to more restrictive class of plants, was proposed in (Lu and
Huang, 2015), based on the concept of steady-state generator (Huang and Chen,
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2004; Chen and Huang, 2005). Finally it is worth mentioning the quite recent
approach pursued in (Astolfi et al., 2015; Astolfi and Praly, 2017), where the reg-
ulator follows a (local) design paradigm closer to the linear perspective. We will
get back to these regulators in the chapters 2 and 3, when talking about post-
processing regulators and robustness, and we will instead give more technical
details about the works (Byrnes and Isidori, 2003; Marconi et al., 2007) in the

following section.

1.2.3 The Byrnes-Isidori and the Marconi-Praly-Isidori Regula-

tors

In this section we briefly present the two main approaches to nonlinear regu-
lation designs that have influenced this thesis most strongly. Contrary to the
linear setting, the nonlinear regulation theory has mainly developed around
Single-Input-Single-Output (SISO) systems, and designs for multivariable plants
usually consist in direct extensions of results originally given for the SISO case.
As done in the original works, in this section we thus present the results for
SISO nonlinear systems. For the related extensions to multivariable systems the
reader is referred to Section 1.2.4 thereafter, while for a more detailed treatise,
the reader is referred to the original papers (Byrnes and Isidori, 2003, 2004; Mar-
coni et al., 2007; Marconi and Praly, 2008a; Isidori, 2017).

The Framework

We restrict the focus on a subclass of nonlinear systems (1.20),(1.21) obtained
with u € R and by partitioning the state z as x = (z,¢e), with z € R"*, n, :=n — 1

and e € R, where z and e satisfy following equations

w = s(w)
¢ = qlw,z,e)+blw,ze)u
y = e’

for some smooth functions f : R® "=+l 3 R and ¢, b : R™ "= & R, The state
e coincides with the regulation error, and it is the only output of the system.

Systems having the form (1.24) are called (SISO) normal forms. We assume in
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the following that b is bounded away from zero and it is sign-definite, i.e. there
exists b > 0 such that b < b(w, z, €) in the whole state space. We shall also assume
that the initial conditions w(0) of the exosystem range in a compact invariant set
W C R™. It can be shown (see Byrnes and Isidori, 2003, Sec. V) that the system

(1.24) possesses a well-defined zero dynamics given by the system

w = s(w)

1.25
z = f(w,z0). ( )

Common to all the three approaches there is the standing assumption of mini-

mum phase. This assumption comes in four main versions detailed below:

Assumption 1.2. (Weak Minimum Phase) There exists a compact set A C W x R"=
which is locally asymptotically stable (LAS) for (1.25).

Assumption 1.3. (Weak Minimum Phase + LES) Assumption 1.2 holds with A that

is also locally exponentially stable.

Assumption 1.4. (Strong Minimum Phase) There exists a compact set A C W x R"=
such that the (w, z) subsystem of (1.24) is input-to-state stable (ISS) with respect to
A and relatively to the input e, namely there exist € LK and p € K such that each
solution to (1.25) satisfies

[(w(t), 2(t))]a < B([(w(0), 2(0))].a,£) + plelo.)- (1.26)

Assumption 1.5. (Strong Minimum Phase + Linear p) Assumption 1.4 holds with p

linear.

Remark 1.3. Clearly, Assumption 1.5 = Assumption 1.4 = Assumption
1.3 = Assumption 1.2. Nevertheless, there is a quite standard method that,
if the regulator achieve some given properties, allows to extend results proved
under Assumptions 1.5 or 1.4 to cases in which, respectively, only Assumptions
1.3 or 1.2 hold. This “standard machine” is based on the key observation that lo-
cal asymptotic stability implies local ISS (i.e. that Assumption 1.4 holds locally).
Thus, if the regulator can be tuned to ensure that the state e converges to an ar-
bitrarily small neighborhood in an arbitrarily small time, despite the (bounded)
value of z, then for initial conditions of (w, z) close enough to A, the fast tran-

sitory of e is not able to make (w, ) exit the set in which Assumption 1.4 holds,
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and the same argument used to prove the result under this latter assumption can
be used. Since LES also implies Assumption 1.5 locally, then the same arguments

can be translated to Assumptions 1.3 and 1.5. A

Remark 1.4. Together with the SISO limitation, the assumption of minimum
phase is the main trait making abrupt the passage from the linear regulation
theory to the nonlinear counterpart. For the regulators presented in this sections,
the minimum phase assumption is asked to support a stabilization mechanism
strongly oriented towards “high-gain” techniques, for which a systematic theory
to deal with zero dynamics that are unstable relative to a set larger than the

origin does not exist yet. A

The Byrnes-Isidori Regulator

The Byrnes-Isidori regulator has originally be presented in (Byrnes and Isidori,
2004). A semi-global practical result was given under Assumption 1.2, which
becomes asymptotic whenever Assumption 1.3 holds. Given a compact set Z x
E C R™*! of initial conditions, the regulator builds on the following standing

assumption:
Assumption 1.6. With H,, denoting the exosystem (1.21), the following hold:

1. QHw(W) = UwGW QHw (’ZU),

2. The positive orbit of W x Z under the flow of (1.25) has compact closure and
A= 9(1.25)(W X Z) C ll’lt(W X Z)

It is clear from (1.24) that the set of the possible ideal error-zeroing control

law are given by the functions®:
w= 2 (1.27)
z

as (w, z) range in the set of solutions to (1.25) originating in .A. A last assumption

is required, that reads as follows:

>In this respect, we notice that the result in (Byrnes and Isidori, 2004) was given with b = 1.
Nevertheless the result can be easily shown to apply to the case considered here.
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Assumption 1.7. There exists d € N and ¢ : R? — R, such that, for each solution®
(w, z) € S1.25)(A), the function u*(t) defined in (1.27) fulfills

w @ = ¢(u*, .. ,u*(d_l)).

Remark 1.5. Assumption 1.7 extends the linearity assumption ubiquitous in the
previous frameworks (Huang, 2001) in which ¢ were a linear map. It asks that

the constrained system

b= s(w) (w,2) € A (1.28)
2 = f(w,z0)

with output u* = —q(w, 2,0)/b(w, z,0) is immersed into a system of the form
Q.JZ' = Uj+1, Z:L,d—l
Ug = ¢(U17"'7Ud) (129)
ut = vy,

in the sense that each output produced by (1.28) can be reproduced by (1.29).
Checking such assumption requires the knowledge of all the solutions to (1.28),
and thus it might be impractical. Nevertheless, under the quite common (see
Section 1.2.4) further assumption that, for some sufficiently smooth map 7 :
W — R™, A = graphm, the above immersion condition is equivalent to ask
that the function c(w) := —q(w, 7(w), 0)/b(w, 7(w), 0) satisfy

Lf(w)c(w) = ¢(c(w), ... ,Lg(’u})c(w)),

thus making Assumption 1.7 a property of the exosystem, and creating a direct

link to the linear case. AN

We define the map 7 : A — R" x R"* as:

w,z) = 4020 Ly 2 9mlw ) [s(w) .
i (w, 2) . i(w, 2) w2) (f(w,z,o))’ 2,....d,

then the Byrnes-Isidori regulator is a system with state n € R? satisfying the

®We recall that whenever % denotes a system and X a set, Sy (S) denotes the set of solutions
to % originating in X (see the notation section).
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following equations
N = An+ Bos(n) + Gu
u = Cn+v (1.30)
= —ke,

where (A, B, () is a triplet in prime form of dimension d (see the Notation sec-
tion), ¢, : RY — R is any Lipschitz function that agrees with ¢ on the set 7(A),
k > 1is a control parameter, G := col(cig, cag?, ..., cqg?), being g > 1 a sec-
ond control parameter, and (ci, ..., cq) € HC(d). The auxiliary input v = —ke is
a high-gain stabilizing component, while C'p = 1; must asymptotically generate
u*. The regulator (1.30) is characterized by the following result, which is adapted
from (Byrnes and Isidori, 2004, Prop. 1).

Proposition 1.3. (Byrnes and Isidori, 2004) Let W and Z be compact, and suppose
that Assumptions 1.2, 1.6 and 1.7 hold, the first with a domain of attraction including
W x Z. Pick any compact sets H C R? and E C R. Then, there exist g* > 0 and,
for every g > g* and € > 0, a k*(g,¢) > 0 such that, if g > ¢* and k > k*(g,¢),
the positive orbit of W x Z x E x H under the closed-loop system (1.24), (1.30) is
bounded and there exists t such that |e(t)| < € for all t > t. If, in addition, A is also
locally exponentially stable for (1.25), then lim,_, e(t) = 0.

The Marconi-Praly-Isidori Regulator

The Marconi-Praly-Isidori regulator was originally introduced in (Marconi et al.,
2007), under Assumption 1.2 and with b(w, z,e) = 1 (though, the results extend
with minor modification). The result is still semi-global, i.e. the initial condi-
tions of (1.24) are supposed to range in a given arbitrary compact set Z x £ C
R"=*1, The regulator has state n € R?, d € N and is described by equations of the

form
n = Fn+ Gu, n(0) e M
u = vy(n)+v (1.31)
= #le)

where (F,G) € R>4 x R™1, M c RY, v : R - Rand k € R — R are all to
be fixed. Without any further assumptions (but with the functions s, f,q and b

sufficiently regular) the result of (Marconi et al., 2007) reads as follows.
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Theorem 1.1. (Marconi et al., 2007) There exists d € N, a controllable pair (F,G) €
R4 x R, g continuous function v : RY — R and, for any compact set M C R, a
continuous function k € R — R, such that the regulator (1.31) solves the problem of
asymptotic output regulation for (1.24).

The stabilizing action v = k(e) is in general nonlinear, and can be taken of

the form
k(e) = —sign(e)a(lel),

with o € K. Furthermore, if Assumption 1.2 is substituted by Assumption 1.3,
then x can be taken linear (Marconi et al., 2007, Thm. 3), i.e. so that

v=—ke

for large enough £ > 0. Moreover, the same linear choice will guarantee practical

regulation when only Assumption 1.2 holds (Marconi et al., 2007, Thm. 2).

Remark 1.6. We observe that the structure of the Byrnes-Isidori internal model
unit (1.30) has the same form of usual high-gain observers (Khalil and Praly,
2013), where the output injection term is substituted by the stabilizing action v.
In the same way, the Marconi-Praly-Isidori regulator (1.31) has the same form
of the nonlinear Kazantzis-Kravaris/Luenberger observers (Andrieu and Praly,
2006), where again the output injection term is substituted by the stabilizing ac-
tion v. This is obviously not a coincidence, and the reason is that in a certain
time-scale the two internal model unit act as an observer for the process gener-
ating the ideal error-zeroing control law u*, and v is used as a proxy variable for

the output injection term. A

1.2.4 Extensions and Further Developments

In the years after (Marconi et al., 2007) was published, the Marconi-Praly-Isidori
was subject to a number refinements: in (Marconi and Praly, 2008a) several exact
and approximate expressions of v have been proposed in a complete framework
in which practical regulation can be solved. In (Delli Priscoli et al., 2008) the
same design was applied in presence of redundant measurements, in (Marconi
and Praly, 2008b) several issues concerning the design of the stabilizing action

r have been considered while in (Isidori et al., 2010) sufficient conditions to be
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allowed to take vy Lipschitz have been given. In (Isidori and Marconi, 2012) the
regulator was “shifted” to the regulation error, i.e. instead of v, the internal
model’s input was taken as e (we will get back to this issue in Chapter 2). The
Marconi-Praly-Isidori regulator was also extended to some classes of multivari-
able nonlinear systems: a first tiny extension of (Isidori and Marconi, 2012) to
multivariable square normal forms was given in (Astolfi et al., 2013), while in-
vertible multivariable systems have been considered in (Wang et al., 2016, 2017;
Pyrkin and Isidori, 2017).

The Byrnes-Isidori regulator was the subject to extensions mainly in adaptive
and robust contexts. In this respect, it is worth citing (Delli Priscoli et al., 2006),
where the regulator has been augmented with a basic adaptation mechanism,
(Isidori et al., 2012), where immersion arguments building on Assumption 1.7
have been used to deal with uncertain oscillators without adaptation (an exten-
sion of this will be the subject of Section 3.2), and (Forte et al., 2017), where a new
adaptive framework based on hybrid identification schemes has been proposed.
For what concerns extensions to multivariable systems, up to our knowledge
only the “trivial” case of square multivariable normal forms has been considered
in (McGregor et al., 2006).

Constructive Designs and the Nonlinear Regulator Equations

Although the Marconi-Praly-Isidori regulator is more general than the Byrnes-
Isidori one, in the sense that existence results are given without the immersion
Assumption 1.7, the Byrnes-Isidori design is way more “constructive”. As a mat-
ter of fact, if asymptotic regulation is sough, under Assumption 1.7 it is straight-
forward to design the regulator (1.30), whereas the is no clue, even under the
same assumption, in how to chose (1.31). When practical and approximate reg-
ulation problems are considered, moreover, the design of (1.30) is done at the
same way as the actual function ¢ of assumption 1.7 were known (Isidori et al.,
2012), whereas the constructive procedures for (1.31) proposed in (Marconi and
Praly, 2008a) are way more complex to implement, and demanding in terms of
computational workload.

Interesting enough, the majority of the constructive extensions of the two
regulators require a further common assumption, which is based on a nonlinear

version of the regulator equations (1.10)-(1.11), and that reads as follows:
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Assumption 1.8. There exist smooth maps 7 : domn — R"* and u* : domu* — R,

defined on open supersets dom m and dom u* of W, solving the following equations

Lir(w) = f(w,n(w),0)

(1.32)
0 = q(w,7m(w),0)+ blw,m(w),0)u*(w).

Among the papers that require Assumption 1.8 we find almost all the design
before the papers (Byrnes and Isidori, 2003, 2004), that in addition ask u*(w) to
be generated by a linear system (Huang, 2001). Purely nonlinear designs that
require Assumption 1.8 are instead: the Chen-Lu-Huang regulator (Chen and
Huang, 2005; Lu and Huang, 2015), the (aforementioned) extensions (Isidori and
Marconi, 2012; Astolfi et al., 2013; Wang et al., 2016, 2017) of the Marconi-Praly-
Isidori regulator and the extensions (Isidori et al., 2012; Forte et al., 2017) of the
Byrnes-Isidori regulator.

Equations (1.32) are known as the nonlinear regulator equations (Isidori and
Byrnes, 1990) and they express the invariance of the set where e = 0. In this
respect, the function u* is the ideal error-zeroing control law, and in the output
regulation community it is referred to as the friend. The solution (7, u*) to (1.32)
plays a fundamental role and it typically complements one of the assumptions
1.2,1.3, 1.4 or 1.5 by asking, in addition, that

A = graph, (1.33)

that in turn means that the asymptotic trajectories of the zero dynamics are of

the form
z(t) = w(w(t)).

This assumption is usually exploited for the design of the internal model unit,

as it is clear from (1.32) that u* is given by
u(w) = SACIKI (1.34)

i.e. the existence of 7 permits to express the error-zeroing control law as a func-
tion of exclusively w.
Although (1.34) simplifies considerably the problem, because it means that

the internal model has to generate signals that are only defined by the exosystem
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dynamics, it only holds under Assumption 1.8 and if (1.33) holds. These, in turn,
are very restrictive assumptions holding in systems that behave almost-linearly.
As a matter of fact, the minimum-phase assumptions 1.2-1.4 make reference to
an attractor that, in general, is the graph of a set-valued map (Byrnes and Isidori,
2003). The next theorem is the most general sufficient (though not necessary)
condition that we found under which we can claim that the steady-state map is
single-valued (which is obviously a necessary condition for having Assumption
1.8 and (1.33)). In the forthcoming theorem we make reference to a cascade of

the form

OF {;” z jf(zz’j})x) (1.35)

with w € R™, x € R" and with initial conditions that range in a compact set

W x X C R™*" We let ¥,, denote the (autonomous) subsystem w of 3 and we

make the following structural assumptions
Assumption 1.9. The following hold:

1. ¥ is forward complete from W x X.

2. W is forward invariant for ¥,,.

3. For every € > 0 there exists § > 0 such that, for every two solutions w, wy €
Sy, (W), the following holds

w1 (0) —ws(0)] <6 = |wi(t) —wa(t)| <&, Vit ER,.

Theorem 1.2. Consider the system (1.35) and suppose the Assumption 1.9 holds.

Suppose, moreover, that every two solutions (wy, x1), (wa, x2) € Ss(W x X) fulfill”

limsup |z (£) — 22()] < p (nm sup [ (1) w2<t>r> (1.36)

t—o00 t—o00

uniformly in W x X. Then there exist a compact set U C W and a continuous function

7 : U — R" such that the set graph 7 is uniformly attractive for ¥ from W x X.

"We observe that the condition (1.36) is a contraction condition typical of systems possessing
incremental stability properties (see e.g. Lohmiller and Slotine, 1998; Angeli, 2002; Jouffroy and
Fossen, 2010).
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Proof. Clearly, invariance of W for the subsystem w and (1.36) imply that ¥
is uniformly eventually bounded from W x X. Thus (see Proposition 3.8) the
Q-limit set Qx (W x X) is compact, non-empty and uniformly attractive from
W x X.letIl: domIl C R™ — R" be the set-valued map

M(w) :={x e R" : (w,z) € Qu(W x X)},

then graphIl C Aand U := dom Il C W are not empty and compact, and, hence,
IT is upper semicontinuous® (see Aubin and Cellina, 1984, Cor. 1, Chap. 1). It
remains to show that II is single-valued. Suppose the opposite, then there exist
w € R™ and 71, s € R" such that (w, ), (w0, Z2) € graph Il and

71 # To. (1.37)

As graph Il coincides with Qx(W x X), then, by definition of Q-limit set, for
i = 1,2 there exist sequences ((w]',z?)), of (w!',a") € Sx(W x X) and (t}'),, of
t? € Ry such that ¢t — oo and

wi (t7) — w, () = 7. (1.38)
We can write, for each n € N,

|21 = o] = |71 — 27 (1)) + 27 (1)) — 23(85) + 23(15) — 2o

< |2y — 2y ()| + |22 — 25 (85)] + 27 (67) — 25 (£3)].

Equation (1.38) implies that for each ¢ > 0 there exists n;(¢) € N such that

n > ny(€) implies |z, — 27 ()| + |Z2 — 25 (t5)| < €/2, so that we can write
[Ty — To| <€/2+ |2y (8) — 25 (t5)] (1.39)

for n > n4(€). On the other hand, as ¢! — oo, equation (1.36) implies that there
exists ns(€) € N such that, for all n > ns(e),

|27 (t) — 25 ()] < e/d+p (lim sup |wi (1) — wg(7)|> (1.40)

T—00

8Namely, for any w € domII and any open set N containing II(w), there exists a neighbor-
hood M of w such that F(M) C N.
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for all ¢ > t?. Furthermore, for each n € N,

lim sup [« () — w§ (r)] = inf sup[w}(r) —wi(r)| < sup Juf(r) —wj(r)]
oo 20 7>¢ T>max{t} t3}
(1.41)
Let
€= p_1(6/4),

and let 0 be the constant for which point 3 of Assumption 1.9 holds with such
choice of €. Then, (1.38) implies that there exists n3(¢) € N such that, for all
n > ng(e), it holds that

jwi (1) — w3 (t3)] <4,

so as point 3 of Assumption 1.9 implies that

sup |wi(7) — wi(7)] < p~ ' (e/4).

T>max{t],t5}

Hence, by letting 72(€) := max{n,(€), na(€), n3(€)}, in view of (1.40)-(1.41) we ob-
tain
|27 (1) — a3 (t5)] < €/2

for all n > n(e), that in turn, in view of (1.39), implies
|f1 — Zi’Ql < €.

For the arbitrariness of ¢ we thus conclude that |z, — Zo| = 0, that contradicts
(1.37). Hence we claim that z; = Z» and, for the arbitrariness of (w, Z;) we con-
clude that II is single-valued. As II is upper semicontinuous, then II is continu-

ous and the claim of the theorem follows with 7 := II. [ |
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Post-Processing Internal Models

He linear regulator, as presented in Section 1.1.3, follows a so-called post-
processing paradigm, in which the internal model unit is driven by the
regulation errors and the stabilizer is designed to ensure the closed-loop

stability. Interestingly enough, almost all the approaches to nonlinear regulation
show instead a complementary structure (referred to as pre-processing), in which
the stabilizer is driven by the regulation errors and the internal model unit by the
control input. In this chapter we discuss the main properties of the two classes of
regulators; we show that, on the first hand, the pre-processing designs are char-
acterized by some strong conceptual limitations preventing their applicability to
more general nonlinear systems and that, on the other hand, the post-processing
regulators, in principle not affected by such structural drawbacks, introduce an
intertwining between the internal model unit and the stabilizer that does not
permit a sequential design of the two units. We then present sufficient condi-
tions for the existence of a post-processing regulator for a class of multivariable
nonlinear regulation problems that cannot be solved, in their full generality, by

existing pre-processing regulators.
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2.1 Pre-processing vs Post-processing

Most of the approaches to nonlinear regulation mentioned so far (see Section
1.2.2) are driven by the stabilizing action (v in (1.30) and (1.31)), i.e. by a part
of the control input. In fact, the regulators presented in Section 1.2.3 have a

common form of the kind
n o= ®(n)+Gv

u = alm+w. .

for some functions ® and « that change for each design, and where v is a stabi-
lizing action depending on e. This is however not the case of the linear regulator
(see Section 1.1.3) that instead is directly driven by the unprocessed regulation

errors e and, at least in the state-feedback case, can be taken of the form

n = dn+Ge

(2.2)
u = K1?7+K2£L'

We call a regulator of this latter kind a post-processing regulator, as it directly
processes e. Conversely, we refer to the regulators that are driven by the input
as pre-processing regulators, as the error is pre-processed by the stabilizer be-
fore being accessed by the internal model unit. Figures 2.1 and 2.2 depict the

conceptual block diagrams of the two paradigms.

Plant € Int. Model

Stabilizer

Figure 2.1: Post-Processing Internal Model.

n
Int. Model (+) 4 Plant €

Stabilizer

Figure 2.2: Pre-Processing Internal Model.
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A part from their structural differences, pre- and post-processing schemes
also differ in terms of “design philosophy”: in post-processing regulators the
plant is augmented with the internal model unit; the stabilizer is designed to
stabilize the resulting cascade and to guarantees that the closed-loop system has
a well-defined steady state; finally, the properties of the steady-state regulation
error are inferred by the structure of the internal model. In pre-processing regu-
lators, instead, the internal model unit is designed to directly generate the ideal
error-zeroing control action (u*(w) in (1.32)) that makes the ideal steady state
in which e = 0 (7(w) in (1.32)) invariant. The stabilizer is then designed to en-
force the desired attractiveness properties of such ideal steady state. Thus, in
pre-processing schemes, the ideal steady states of the internal model unit and of
the stabilizer are fixed by the plant’s data (by the regulator equations). In post-
processing regulators, instead, the ideal steady state for the internal model unit
and for the stabilizer cannot be fixed a priori. In fact, since 7 is used for stabi-
lization purposes, and thus it is processed by the stabilizer, its ideal steady state
is strongly dependent on the particular instance of the stabilizer.

The pre-processing schemes have the interesting property that the roles of the
internal model unit and the stabilizer are neatly separated and the ideal steady
state of the closed-loop system is given by the problem statement. This higher
conceptual simplicity is, perhaps, the reason why most of the existing designs are of
the pre-processing schemes. Nevertheless, pre-processing regulators have some
structural limitations that prevent their application to larger classes of systems
of those treated until now, thus making their applicability to be restricted essen-
tially to minimum-phase square normal forms, where the only outputs usable
for feedback are the regulation errors themselves. In particular, it is not clear,
at a conceptual level, how a pre-processing regulator could deal in a system-
atic way with additional outputs not vanishing at the ideal steady sate in which
e = 0, or with an input dimension larger than those of the errors. If more in-
puts than errors are present, indeed, it is not clear how to extend the role of
the stabilizing action (v in (2.1)) to larger dimensions. If the stabilizing action
is taken of dimension equal to dim(e), then we must find a suitable selection of
the inputs to implement it, and this requires the adoption of necessarily non-
robust squaring down strategies. Conversely, if the stabilizing action is taken of
dimension dim(u), then it is not clear how to chose the dimension of the internal

model, which is fed by the stabilizing action: if the dimension is kept equal to

35



dim(e), then a squaring down is required; if, instead, the dimension of the inter-
nal model is taken to be equal to dim(u), then we need to add some redundant
internal models, leading to a system that is not stabilizable by error feedback
(as a simple linear example would show). On the other hand, there is not even
a clear road map to handle additional measured outputs that are necessary to
obtain closed-loop stability (or even minimum-phase) but that need not to van-
ish at the steady state. As a matter of fact, if they contribute to the stabilizing
action, then they must be filtered out by the stabilizer at the steady state for the
regulator to be consistent with the steady-state specifications.

These conceptual problems, in principle not present in regulators of the post-
processing type, recently motivated the community to look for post-processing
alternatives to the existing regulators. In (Isidori and Marconi, 2012) the authors
tried to “shift” the pre-processing Marconi-Praly-Isidori regulator to an equiv-
alent pre-processing design. The same regulator has been then subject to the
minor extension to multivariable square normal forms in (Astolfi et al., 2013).
In (Bin and Marconi, 2017b), the Byrnes-Isidori regulator has been shifted to a
post-processing version as well. However, no conceptual progress has been made
in terms of extension to larger classes of systems compared to pre-processing
schemes, and the obtained design are equivalent to the pre-processing counter-
parts. A different approach to the design of post-processing regulators is the
one adopted in (Astolfi and Praly, 2017) and in (Astolfi et al., 2015), where the
linear regulator is attached to a class of nonlinear systems. In particular, in (As-
tolfi and Praly, 2017) the authors showed that the output regulation problem
can be solved robustly by a post-processing regulator (an integral action) when-
ever the steady state is made of equilibria. In (Astolfi et al., 2015), the authors
extended the results to the case in which the steady-state signals are periodic,
obtaining, however, only an approximate result stating that the Fourier coeffi-
cients in the regulation errors corresponding to the frequencies embedded in the
internal model vanish at the steady state (this result is treated in a more general
envelope in Section 3.4).

In conclusion, almost the totality of nonlinear regulator designs presented so
far are of the pre-processing type, and the few existing post-processing examples
are either constructed by “shifting” an existing pre-processing regulator (thus
leading to no advantage) or are unable to give an asymptotic result if not under

very restrictive assumptions on the steady-state trajectories. The reason behind
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this fact has to be sought in the internal intertwining between the internal model
unit and the stabilizer that is structurally present in post-processing schemes
and that arises necessarily as far as nonlinear systems are concerned. We explore

this property in the next section.

2.2 The Chicken-egg Dilemma of Output Regulation

Post-processing design paradigms do not present, in principle, the main concep-
tual obstructions of pre-processing schemes. Nevertheless they come with other
structural features, not present in the pre-processing case, that make the bound-
ary between the roles of the internal model unit and the stabilizers to fade away,
thus invalidating the nice conceptual separation of the two subsystems and lead-
ing to a more challenging synthesis phase.

In post-processing regulators the stabilizer is designed to stabilize the cascade
of the plant and the internal model unit, by working on the available information
given by the plant output y and the internal model state 7. It is thus easy to see
that the stabilizer strongly depends on the choice of the internal model unit.
On the other hand, at the steady state, the internal model unit has to generate
the input n* that, processed by the stabilizer together with the other steady-state
plant output y*, produces the ideal error-zeroing control action «*. This can be

seen by means of a simple example.

Example 2.1. Consider the system

11)1 = W3
wy = P(w)
e = u-—w

withw € R?and e, u € R. By following the linear intuition, we define a candidate

internal model unit of the kind

m = m+Ge

~

7.72 - ¢(n)+G267
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with GG, G5 and ngS to be fixed, and we choose a stabilizing action of the form
u = kie + ko, (2.3)

for some k; € R and ky € R'*2. It is clear from the equation of e that in order
to keep e to zero, asymptotically uw must equal w;. Hence, (2.3) implies that the

ideal error-zeroing steady-state for n must satisfy

karmy + kaamy = wr, =10 5 = o(n"). (2.4)
These three constraints can be condensed in the following equation

o601 1 ,{22%7?@(,7*) — (w), (2.5)

k‘zlcg(n*) + koo o

which expresses the fact that the correct map ¢ and the ideal steady state 7* must
necessarily fulfill a condition strongly dependent on w and on the stabilizer gains
ko1 and kgo. If ¢ were linear, we could in principle take ngS = ¢ and play with n*
to have (2.5) fulfilled, by leveraging the fact that a weighted sum of sinusoids
is again a sinusoid at the same frequency. If ¢ is not linear, however, a general
solution in which ¢ is not dependent on k; is hard to imagine.

A possible way to proceed is to take ko2 = 0 and ko; # 0, thus obtaining from
(2.4)-(2.5)

~

1 w
*\ korn* * _ ]
() —k21¢( 211"), "=

We now notice that, by taking ks; = k;, and changing variables as n — 7 :=n—n*

(2.6)

and e — ¢ := e + 7y yields

io= Mj+B(o(i+n%) — ¢(w)/ki) + Ge
¢ = (Gy+ki)e+1 — Gy,

with M = col((—G41), (—G20)), B := col(0,1) and G := col(G,G2). Assuming
for simplicity that ¢ is Lipschitz, (2.6) and ks = k; yield

18 + 7%) — d(w) /| = kilw(m T+ w) — g(w)] < Lol

for some L, > 0. Hence, the gains GG and G2 can be designed (for instance by
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high-gain arguments as in (Byrnes and Isidori, 2004)) to make the subsystem 7
ISS relative to the origin and with respect to the input ¢, and the gain %; can be
taken sufficiently negative to induce a contraction in the closed-loop system, thus
solving the problem at hand. With this post-processing solution the intertwining
between the internal model and the stabilizer is clear: on the first hand, the
internal model must satisfy equation (2.6) with ky; = k;. On the other hand, the
stabilizer gain k; must be taken large enough to stabilize the closed-loop system,
and how large depends on G, G and Ly, i.e. by the structure of the internal
model.

Interestingly enough, we also observe how choosing ky; = 1 instead makes ¢
and n* in (2.6) to be independent on k;. Nevertheless (we leave the computations
to the reader and we refer to (Bin and Marconi, 2017b) for further details), if we
insist with a similar stabilization approach, the gains G; and G5 turn out to be

necessarily proportional to £, i.e. we obtain an internal model unit of the form

mo o= m+ G
= é(n) + Gy
v = ke,

for some GG} and G, which is exactly the pre-processing Byrnes-Isidori regulator.
A

More in general, the intertwining between the internal model and the stabi-

lizer can be seen by considering a stabilizer of the generic form

& = oy,
u = v(&y,n).

The ideal error-zeroing control action u*, as well as the ideal steady-state value
y* of the output y, are given by the plant’s data (by the regulator equations)
and, at the steady state, the stabilizer must necessarily fulfill a right-invertibility
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condition! of the kind _
& = o€ y"n)

*

(2.7)
wo= 2yt

a.e. for some ideal steady state trajectories £* and n*. The condition (2.7) clearly
underlines that the ideal steady state n* of the internal model, the ideal steady
state £* of the stabilizer, and the functions ¢ and ~, that are all unknowns of the
same equation, necessarily have to be fixed together at the same time, possibly
relying on the knowledge of y*. As n* must be a solution of the internal model
unit, we then see that the structure of the internal model becomes dependent on
the stabilizer. In (Bin and Marconi, 2018a,b) we called this intertwining between
the internal model unit and the stabilizer the “chicken-egg dilemma” of output
regulation to underline that, if we insist to separate a requlator in an internal model
unit and a stabilizer, then the two units cannot be designed by means of a sequential
strategy as in pre-processing schemes but, rather, they have to be co-designed.

In linear systems the chicken-egg dilemma is broken by linearity, as it im-
plies that, no matter how the stabilizer is chosen in the class of linear systems,
the steady-state closed-loop signals will have the same modes of the driving ex-
osystem. Therefore, choosing the internal model unit to embed such modes per-
mits to bypass the difficulties introduced by (2.7) as linearity ensures that, for
any possible £* and y*, the corresponding n* exists and is producible by a system
of appropriate dimension that contains the same frequencies of the exosystem.
Thus, all the possible uncertainties in the particular value of n* coming from the
chicken-egg dilemma will just reflect into the right initialization of the internal
model unit, by leaving its structure untouched. This last fact is, in a nutshell, the
only reason why the linear regulator is “robust”: all the considered uncertainties,
coming from plant’s uncertain parameters and from the chicken-egg dilemma, do not
change the structure of the “right” internal model unit to be implemented, but only its
correct initialization.

In the case of nonlinear system this fortunate conditions are far to be pos-
sible, and the chicken-egg dilemma has to be faced or avoided in some other

way. The most common way to avoid dealing with it is to go for pre-processing

Calling (2.7) a right-invertibility condition is motivate by the fact that finding the set
{(&"n*) + w* = (&, y*,n*)} coincides with finding the graph of the right-pseudoinverse of
. This is better show in the case in which y* is not present in the second equation, i.e. when we
can write u* = (£*,7*). In such case, indeed, we can take (£*,7n*) = 7" (u*), with " such that
v o~" is the identity.
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schemes, with the drawback, however, that only limited classes of systems can be
considered. In most of the primordial nonlinear output regulation literature (see
e.g. (Byrnes et al., 1997a; Huang and Chen, 2004; Huang, 2001) and all the suc-
cessive designs based on the same idea) the chicken-egg dilemma was avoided
by assuming that the steady-state signals are defined by an algebraic function
of the exosystem trajectory w(t) (i.e. essentially Assumption 1.8) and the ideal
error-zeroing control law u* can be written as u*(t) = c¢(w(t)) for some polyno-
mial functions c. In that case, for specific classes of systems (Byrnes et al., 1997b;
Huang, 2001) and with the exosystem that is linear, it can be shown that any n*
coming from the inversion (2.7) can be generated by a linear system (of dimen-
sion in general larger than those of the exosystem) and, thus, simple arguments
can be used to ensure asymptotic regulation. On the same line, in the frame-
work of (Astolfi and Praly, 2017) the chicken-egg dilemma is avoided thanks to
the assumption that all the possible steady states are equilibria (and thus (2.7)
has the easy solution of the integrator). In (Astolfi and Marconi, 2015) the au-
thors tried to extend the result of (Astolfi and Praly, 2017) to the case of periodic
steady states, and the construction of the regulator was possible only by sacrific-
ing asymptotic regulation, by giving a result that, in general, is only approximate
and not even practical.

In the next section we present some sufficient conditions under which a post-
processing regulator can be constructed in the context of (partial) normal forms
that can deal with non-square systems and can manage additional non-vanishing
outputs in a systematic way. These conditions presented are quite not construc-
tive in practice, as they require a level of detail about the system that is hard to
achieve. However the result show how in principle asymptotic post-processing
regulators can be constructed for classes of system that cannot be considered in

pre-processing schemes.

2.3 A Post-Processing Regulator for Multivariable Non-

linear Systems

This section contains unpublished original results, except for a very preliminary
idea appeared in (Bin and Marconi, 2017b). Motivated by the previous discus-

sion about the conceptual limitation of pre-processing approaches, we present
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here the construction of a regulator of the post-processing kind. We give suf-
ficient conditions for asymptotic regulation and we prove that, even if they are
not met, a practical regulation result of the same kind of those proved in (Isidori
et al., 2012) for the Byrnes-Isidori regulator holds. As we will further comment
in Section 2.3.3, the chicken-egg dilemma clearly manifests when the different
degrees of freedom of the regulator have to be chosen to fulfill the conditions
for asymptotic regulation. As opposite to regulators of the pre-processing type,
here we deal with non-square systems having more inputs than measured out-
puts, and we can handle additional measured outputs that are not vanishing at
the steady state. Even if conceptually interesting, the result however still limits
to a design procedure strongly based on a high-gain perspective, that remains

the major conceptual limitation of this approach.

2.3.1 The Framework

We consider controlled systems of the form

= s(w)
t = f(w,z)+blw,z)u

o= ()G b
Ya ha(wvx) 7

where w € R™, 2 € R", u € R™, e € R", y, € R,y € R"™ (n, = n. + n,) and
with s, f and b sufficiently smooth functions with the property that there exist
r > 0, a set of integers py,...,p, > 0 satisfying p; + - - - + p, = n,, a set of integers
Ny, ..., N, > 0 satistying pyNy + --- +p, N, == N <n,and, fori =1,...,r, aset
of RP-valued smooth functions® {¢{(w, x), ..., &y, _1(w, z),('(w, )} with linearly
independent differentials fulfilling

0&(w, x)

Tb(w, CL’) = 0, V(w, I) € R™ x R" (29)

and that satisfy

§=F¢+ HC (2.10a)

2With slight abuse of notation, in the following we will call with the same symbols ¢ and ¢
both the functions {(w, ) and {(w, z) and the functions ¢ — &(w(t), z(t)) and ¢t — ((w(t), z(1)).
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¢ =q(w,r) + B(w,r)u (2.10b)
y=TC¢ (2.10c)

for some continuous functions ¢ : R" x R" — R™ and B : R™ x R" — R™*™,
and where we let £ := col(&',...,&") € RV ™™, & := col(&l, ..., &k, _,) € RNt
¢ :=col(¢t,...,(") € R™ and where T' € R™*™ is a known permutation matrix,
C = diag(C4, ..., C,) have the form

C; = (Ipi Opixpi(Ni*Q))

and F' € ROV=m)x(N=my) and H € RW=")*" are block lower-triangular matrices

whose diagonal blocks are given respectively by

F.. = Opi(Ni72) [pi(Ni72) H.. = 01)1><(N¢*2) .
Opi Opixpi(Ni—Q) Ipi

According to the partition y = col(e, y,) we let C, € R"*(N=) and C, € R"*(N=m)

be such that
re - (C> |
Ca

For simplicity, we develop here the case in which T" = I,, , i.e. we assume that

e=Cl=col(& :i=1,...,7)
Yo=Coé =col(& :i=r.+1,...,7)

where r. is such that py +--- +p,, = n. and r, := r — r. (we also let N, =
pNy + - +p..N,, and N, = N — N,.). We note though, that the result can be

easily extended to arbitrary 7' by means of a simple change of coordinates.

Remark 2.1. The class of systems considered includes multivariable normal forms
and partial normal forms (Isidori, 1999), with the latter that always exist locally
whenever (possibly after a preliminary feedback) the system (2.8) is a) strongly
invertible in the sense of (Hirschorn, 1979; Singh, 1981), and b) input-output lin-

earizable® (Isidori, 1995). For what concerns the computation of the functions

3That is, there exists a state feedback control of the form u = a(w, ) + G(w,z)v, with v €
R™ an auxiliary input and G full rank, such that the resulting system has linear input-output
behavior from v to y.
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q(w,z) and B(w, ) in (2.10a)-(2.10c) in the context of partial normal forms, the
reader is referred to (Isidori, 1999; Wang et al., 2015a). AN

Remark 2.2. Differently from almost all the previous literature (see e.g McGre-
gor et al., 2006; Astolfi et al., 2013; Wang et al., 2016, 2017), we do not constraint
m = dim(u) to be equal to n. or n,, i.e. we consider a non-square system in which
the number of inputs can be larger than that of the outputs. Furthermore, we
structurally handle the feedback of additional outputs y, that do not need to
vanish at the steady state but that might be necessary to obtain the form (2.10a),
(2.10b), (2.10c) or to fulfil all the assumptions below. A

We will construct the regulator based on a number of assumptions introduced

below:

Assumption 2.1. There exists a compact set A C R"™*™, § € KL, and a locally
Lipschitz p € K, such that all the solution pairs (w,z,u) to (2.8) satisfy

[(w(t), 2(t))].a < B(|(w(0), 2(0))]a, ) + (1€ 0.0y + 1¢ o)) (2.11)

for all t € Ry for which they are defined and with £° := col(¢' : i =1,...,r.) and
Cci=col(C': i=1,...,7).

Assumption 2.2. There exists a C* map P : R™ "= — R™>*™ qnd, for each compact
set X C R", a full-rank matrix £ € R™*™ such that:

a. Plw,xz)>0in W x R".

b. Forall (w,z) € W x R" and all u € R™,

c. forall (w,z) e W x X

LY B(w, 2)"P(w,x) + P(w,z)B(w, )L > I. (2.12)

Remark 2.3. As in the context of normal forms and partial normal forms, £ and
¢ are combinations of derivatives of the output y, then Assumption 2.1 can be

seen as a uniform (in u) “output-input stability” (OIS) property, in the sense of
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(Liberzon et al., 2002; Liberzon, 2004), of (w, x) relatively to the set A, that here
plays the role of a strong minimum-phase assumption. The same minimum-phase
assumption appeared for instance in (Wang et al., 2015a, 2016, 2017). However,
we stress that here the minimum phase is asked with respect to the whole set
of outputs (included those that do not need to vanish at the steady state) and,
thus, Assumption 2.1 is milder than usual minimum-phase assumptions, and
it can be possibly obtained by adding further measurements. We also observe
that the result presented here can be extended, in view of Remark 1.3, to the
case in which Assumption 2.1 holds only locally provided, however, that the IOS
property holds only with respect to e = &5. A

Remark 2.4. Assumption 2.2 is a controllability assumption. As it will be clar-
ified later below the proof of Proposition 2.1 this assumption is implicated by
many customary assumptions made in the context of regulation and stabiliza-

tion of partial normal forms. A

With d € N, the regulator is a system with state € R"¢ described by the

following equations
n o= ®(n)+Ge
u = ﬁ(ngg + KeC + ’Cn’fh)

with ® and G having the form

(2.13)

0L, 0 - 0 -

0 0 I, - 0 G
d(n) = N G:=|
0o 0 0 I, '

o (1) G

where ¢ : R%? — R" is a bounded function satisfying

|(R™™)

< Cy

or some Cy, > 0, and where G; € R"*", Iz € Rw*(N=m) . € R™>*™ and with

K, € R">™ that has the form
IC/
oe()) "



for some K} € R"*"<. All these degrees of freedom will be fixed later according

to Proposition 2.1.

Remark 2.5. We give here a partial state feedback result, that employs the auxil-
iary variables ¢ and ( (i.e. combinations of derivatives of the measured output
y). We notice though that a purely output-feedback regulator can be easily ob-
tained by augmenting (2.13) with a partial-state observer of the kind proposed
in (Wang et al., 2015a) (see also Teel and Praly, 1995). A

Substituting the expression of u into the ( subsystem of (2.8) yields

(= q(w,z) + B(w,z) L(Kel + K€+ Kym). (2.15)
Let us define the error-zeroing set
O = {(w,m) e R™*™ : (w,z) € A, £&(w,z) =0, (“(w,x) = 0}.

Let ¢° and ¢ be functions with values in R" and R"* respectively such that

q(w, z) = col(¢®(w, z), ¢*(w, x)), and let denote for brevity
D(w,z) :== B(w,z)L € R™*",

Let partition D(w, x), K¢ and K¢ as:

De,e De,a K:e,e ICe,a ]Ce,e ]Ce,a
v () we (i ) ke () e
p%e D% K™ K K™ Ke
for some D™ (w, z), Ké’j, ICé’j € R"*", i j € {e,a}. Then, in view of (2.14), equa-
tion (2.15) gives
ée _ qe(w7$) + De,e(ﬂj’x) (K:z,ege + K:g,aga + K:z,ege + K:?CLCCL + K:ﬂh) (2 17)

+ De’a(w,l“) (Kg’efe + Kg,aga + ’Cg,ece + ]C?,aca>‘

In view of Assumption 2.1, by considering the restriction of this latter equation

on the error-zeroing set O, we obtain that invariance of O is ensured only if there
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exists a function 7} : A — R satisfying

n

D (w, ) K. ni(w, x) :== —q¢°(w, x) — D**(w, x) (Kg’afa(w, z) + K¢ (w, x))

— D% (w, x) (Kg’afa(w, z) + K¢ (w, x))
(2.18)
for all (w, z) € A. The existence of a unique solution to (2.18) in a neighborhood

of A is ensured by the following assumption.

Assumption 2.3. There exists € > 0 and an open superset N1 of A such that
| mino(D(w,x))| > €

for all (w,z) € Ni.

Under this assumption, if K] is invertible, then (2.18) admits a unique solu-

tion given by

mWwwﬂmrwwwmw*meww>
— D& 4(w, ) (/cg:agau(w, ) + K5 4C? L alw, x))

- D) (K2 ) + KL ) ).
and that solution is bounded with a bound that depends on .4, N3, € and IC;].
The error-zeroing set O is a subset of A, and 7] is only defined on .A. Hence,

in order to exploit the existence of 7}, we need to introduce a further structural

assumption. With ¢(w, z) € R", we consider now the following equations in the

47



unknowns A\¢(w, x) € RN A\ (w,z) € R™ and v;(w,x) € R":

0
Ae(z,w) = ( > : A (w, x) € RNane

A (w, )
0 a Ng—ngq
Ae(z,w) = (/\g(w,x)> , M(w, ) €R
(2.19)
a/\ga(zvu,x)s(w) %:’z)f(w,x) = F)¢(w, z) + H(w, z)
6A<(§Z,x)8<w) N 8Acélxtf,$)f<w7x> = g(w, 2) + B(w, Z)£<’C§)‘£(w=“’)

+ Kee(w, ) + Kyog (w, x)) + ¢(w, x)

In view of the first two equations, the same arguments used above show that,

whenever D¢(w, z) and IC;I are invertible, v; reads as

vy (w, ) = (IC;])_lDe’e(w, z)~! ( —¢“(w,x) — ¢°(w, x)
— D*(w, x) <IC§’aAg(w, z) + KA (w, x))

— D**(w, x) (ICg’“)\g(w, ) + KON (w, x))) ,

(2.20)
for all (w,x) for which it is defined and with ¢® such that ¢ = col(¢*, ¢*) for
some suitable ¢°. We observe that, for ¢ = 0, equations (2.19), (2.20) have a
solution in O, and the solution (¢, A¢, v1) is such that vy (w, z) = nf(w,x) on O,
and the functions \¢ and A; equal the ideal steady state of the variables { and ¢
in which ¢€° = 0, (¢ = 0 (i.e. the regulation error vanishes). In other words, the
solution (¢, A¢, v1) to (2.19) represents an extension to an open superset of O of
the ideal steady state values that (¢, ¢, n7) assumes on O. Hence, in particular, v;
is a function defined also outside O but that coincides with the ideal steady-state

control law 77 on O. This in turn motivates the following Assumption.

Assumption 2.4. There exist an open superset Ny of A, a L, > 0 and a function ¢
satisfying

](p(w,:c)\ < L@’(w7$)‘¢47 (wvx) € N27
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such that (2.19) have a solution (\¢, ¢, vy1) defined in Na.

2.3.2 The Asymptotic Properties of the Regulator

With A; and N, the sets given respectively by Assumption 2.3 and 2.4, we let N
be any open set included in A; N N,. We observe that, under such assumptions,
the function v, is well-defined on A and unique. Thus, with d the same integer
appearing in the definition of (2.13), we can recursively define the functions:

_ Ovi(w, T)

vi(w,x) = ————~s(w)

ow

0v;—1(w, x)

o (f(w, z) 4+ b(w, z)v1 (w, z)),
i=2,...,d+1 (2.21)

v(w, z) = col(vy(w,z) : i=1,...,d).

We stress that, in view of (2.19)-(2.20), the functions v; all depend on the stabi-
lizer. We further observe that it follows from (2.17) and (2.18) that, in order to
ensure asymptotic regulation, the output 7; of the regulator (2.13) must be able

to generate all the signals in the set

W= {m R = R™ : pu(t) = i (w(t), 2(1)), (w(0),2(0)) € A}.

Assumptions 2.3 and 2.4, in turn, imply that 7] coincides with the restriction of
the function v; on A, with v; that is defined in a neighborhood N of A. With the
definition of v given by (2.21), we thus can conclude that v; (and hence 77) could

be generated by the output 7, of the regulator (2.13) whenever
d(v(w, ) = vgp1(w, ), V(w,x) € A. (2.22)

The condition (2.22) expresses the fact that the regulator (2.13) has the internal
model property, as it guarantees that the set {* is a subset of the outputs 1, pro-
ducible by (2.13). In general, however, v and v,;; are uncertain whenever the
plant functions f and g are, as indeed these quantities enter explicitly in (2.21).

This motivates introducing the following quantity

d(w, z) = d(v(w,x)) — vgp1(w, x), (2.23)
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which represents the internal model mismatch, i.e. the modeling error that the sys-
tem 7 of (2.13) attains on N in representing the process that generates v (w, x).

The closed-loop system reads as follows

w = s(w)
Y t = f(w,z)+ b(w, x)E(ICgé(w, z) + KeC(w, ) + /C,,m) (2.24)
1 = O(n) + Ghe(w, x).

The following proposition states the main properties of the regulator.

Proposition 2.1. Let W C R™, X C R" be arbitrary compact sets and suppose that
Assumptions 2.1, 2.2, 2.3 and 2.4 hold. Then there exist a compact set H C R4, g
a > 0,ag" > 0and, for each g > g* and € > 0, matrices L, K¢, K¢, K,), and G,
1=1,...,d, such that:

1. the closed-loop system ¥ is uniformly bounded from W x X x H,
2. there exists ¢ such that RE, (W x X x H) C (O +€B) x R™ for all 7 > 1,

3. each solution to 3 satisfies

sup |d(w, )| (2.25)
(w,z)eA

lim sup |e(t)] <

o
t—o0 gd

uniformly in the initial conditions in W x X x H.

2.3.3 Remarks on the Result

The claim of Proposition 2.1 states that the trajectories of the closed-loop sys-
tem originating in W x X x H are equibounded (item 1), that they converge to
an e-neighborhood of A uniformly in the initial conditions (item 2), and that the
asymptotic bound on the regulation error is proportional to the worst-case inter-
nal model mismatch. Furthermore, as clarified in the proof, € and the asymptotic
bound on the error can be reduced arbitrarily by adjusting g, and this makes the
result of the proposition a practical output regulation result. Since X is arbitrary,
moreover, the result is semiglobal in the plant’s initial conditions.

According to the proof of Proposition 2.1, the degrees of freedom that char-
acterize the regulator (2.13) are chosen by following a “high-gain” strategy. The

only parameters that are truly arbitrary are the order d of the internal model
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and the bound Cj on ¢. Lower values of C,, yield lower values of the high-gain
parameters g and ¢, but reduce the representation capabilities of the internal
model unit. As a matter of fact, point 3 of the proposition states that the asymp-
totic bound on the regulation error is related to the maximum value attained
by the mismatch (2.23) on the set A; thus if the bound of Cj is too tight, such
error might be anyway non zero, even if v and v, are perfectly known. The
functions v and v, ; are obtained by the recursion (2.20), (2.21) and, hence, they
are strongly dependent on the plant’s and the exosystem’s functions s, f and
g, and on the control parameters K¢, K¢ and K,; therefore their perfect knowl-
edge cannot be assumed while fixing C;,. This dependence between the internal
model unit and the stabilizer’s parameters is a manifestation of the “chicken-
egg” dilemma introduced in Section 2.2. The interplay between feedback and
internal model is way more evident when non-vanishing outputs are used for
stabilization, as they need to be compensated at the steady state by the output of
the internal model. In this respect we also note that, as it is the case of the linear
regulator, the feedback of auxiliary outputs might also have a simplifying effect
on the internal model.

The intertwining between internal model and the stabilizer, though, makes
the result of Proposition 2.1 not very constructive, as finding the “right” ¢ to
put in (2.13) might be very complicated. Though, Proposition 2.1 individuates
a clear sufficient condition for asymptotic regulation, given by equation (2.22),
which expresses in this setting the nonlinear version of the internal model prin-
ciple: the regulator must embed a copy of the process that generates the ideal
steady state control action (i.e. 777 = v1| 4 above) that makes the set in which the
error vanishes invariant.

We also observe that, even if the mismatch ¢ is not zero on A, the regulator

ensures practical regulation. As a matter of fact, for each € > 0, choosing

I

€

g> (Z/Oé SUP (w,z)eA |5(w7 I)l

yields
limsup |e(t)] < e.

t—o00

The difficulty of finding the right ¢ and the robustness issues related to its de-

pendency on the plant’s data motivated the research toward adaptive designs of
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regulators of the kind (2.13) presented in Chapter 6.

2.3.4 Proof of Proposition 2.1

We develop the proof in 3 sections. In the first we prove uniform boundedness
of the closed-loop system (i.e. point 1 of the proposition), in the second we prove
that the trajectories are uniformly attracted by an € neighborhood of O (i.e. point
2 of the proposition) and in the third section we prove the bound (2.25) (that is
point 3 of the proposition).

I. Uniform boundedness:
Let partition 1 as = col(n,...,n4) and, for each 7, € R", let partition 7; as
n; = col(n}, ..., ni¢) with nf € RP. Consider the change of coordinates:

& = xG =&+,
Vi=1,...,1: {1 1 1 14
Vi="re,...,7: £ =€

e—~e:=e+n.

By letting x := col(x',...,x"), with x* := col(xi,...,X/y,_1), (2.26) can be com-

pactly rewritten as

X = &+CIn (2.27)
e = Cux.
From (2.13), and since by construction F' C’eT = (), we obtain
X = (F + CIGiCe)x + HC + CI (1 — Gim). (2.28)

We state now the following result, which is proved below this proof.

Lemma 2.1. For any Gy € R"*" and ¢ > 0, there exists K € RP*N=P) sych that the
system (2.28) with output & and with input ( = ( + K, being { € R? an auxiliary

input, satisfies

X! < Belx(O)]8) + a1 (o + o) (2:29)
2] < Be(x(0)],#) + €lClios) + elilon (2.30)
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for some B, Bz € KL and a; > 0.

Pick (hq,...,hy) € HC(d) and, with g > 0 a control parameter, let
G; = gihiIne.
Let A(g) := diag(1,g,...,9% ') and change variables as
n == Ag) 'y,
In the new variables we obtain
j = Alg)™ (A + Bo(A(g)p) + Gle = T

with (A, F,T) a triplet in (d, n.)-prime form. Noting that:

then, by letting M := A — RI', we obtain

fr=gMp+g' " E¢(A(g)p) + gRCex.

(2.31)

Fix Cy > 0 arbitrarily. As (hy, ..., hs) € HC(d), M is Hurwitz; since ¢ is bounded
by Cy, then standard high-gain arguments (Khalil and Praly, 2013) can be used

to show that the system y, seen as a system with input x;, fulfills

a _
()] < Bu(lu(0)], 1) + g—z% + azlelp-

for some 3, € KL and some ay > 0. Thus, by letting 3, = ¢g%~'/3,, using the fact

that || < g?~!|u| and || < ||, we also obtain that the system 7 seen as a system

with input € and output n; fulfills

a 1y
(@) < By(In(0)],) + ;20(,5 + azg™" el

az _
()] < By(In(0)], ) + Eod) + azlélo,
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With e be any small number so that
€ < € 1= ag,

being a, the same as in (2.32), let K be the corresponding matrix produced by

Lemma 2.1, and change variables according to
(= (:=(—-Ky. (2.33)
Then, the bounds (2.29)-(2.30) hold, and Assumption 2.1 also yields

[(w(t), z(t)]a < B(|w(0), 2(0)].4. 1) + p (1 + K DXy + I lo.y + [Cliowy) (2.34)

Let
B = {(w,x,n) eR™™ ¢ (w,x) € A, x(w,2) =0,n= 0}7

then, in view of (2.29), (2.30), (2.32) and (2.34), the small-gain arguments of
(Jiang et al., 1994) can be used to show that the subsystem (w, x, ) fulfills

|(w(t), z(t), n(t)]s < Ba(|(w(0), z(0),7(0))|s.t) + s (Ifho,t) + %) , (2.35)

for some 3 € KL and some locally Lipschitz ps € K.
In view of (2.10b), ¢ fulfills

¢ = o(n, x, ) + q(w, x) + Qw, )u (2.36)

where
Q(Ua X 5) = _K<(F + OeTGICE)X + H¢ + CeT(UQ - Gﬂh))-

With ¢ > 0 a design parameter to be fixed, in (2.13), let
Ke :=IlK, Ke:=—1L,,, K, =t(KCT. (2.37)
In the new coordinates we have

u=LL(K(E+CIm) —¢) = —0LC
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and thus (2.36) yields

¢ = o(n, x,€) + q(w, x) — (B(w, ) £C. (2.38)

We fix ¢ on the basis of the following Lemma, whose proof is postponed at the

end of this proof.

Lemma 2.2. Consider an equation of the form (2.38). Under Assumption 2.2, for
each compact set W x X C R™*" there exist L and (5(g) > (i such that, for all
0> 05(g) and as long as (w,x) € W x X, the following holds*

\c‘<t>rs5g<\é<o>r,t>+%<|r<x,w>|A|[0,t)+rx|[o,t>+|n|m,t>+ sup rq(w,:cn)

w,r)EA

(2.39)
for some Bz € KL and az > 0.

In view of Lemma 2.2, by quite standard arguments (in this respect see for
instance (Byrnes et al., 2003; Isidori, 1995, 1999)) based again on the small-gain
arguments of (Jiang et al., 1994) can be used to show that for each compact set
W x X of initial conditions there exist ¢z € KL, pc > 0, £ and ¢5(g) > ¢5(g) such
that, for all ¢ > ¢5(g), and with

C:=0 x{0}
— {(w,x,n) € Rrwtntned . (y x) € A, x(w,z) =0, ((w, ) =0,n = 0},

the following bound holds

()00 < fell(w0). 20 nO)e.0) + 5 (1455 ) 20

and thus the closed-loop system is forward complete and uniformly bounded

from W x X x R¥", and point 1 of the proposition follows.

II. Existence of a Steady State:
The equation (2.40) implies that, for each H C R% compact, the Q-limit set
Qu(W x X x H) of the closed-loop system (2.8), (2.13) is compact, non-empty,

“We observe that the constant a; and the function 3; might depend on ¢ produced by Lemma
2.1.
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uniformly attractive from W x X x H and invariant. Moreover, we can chose H
and ¢such that D := Q, (W x X xH) C Wx X xH, sothat D is also asymptotically
stable. Furthermore, in view of (2.40), given any € > 0, then for large enough ¢
(say ¢ > (3(g) > (3(g)) we have

[(w(t), z(t),n(t)le < Pe(l(w(0),2(0),7(0))le, t) + e,
so that also point 2 of the proposition holds.

IT1. Asymptotic Bound:

Note that in (2.37) K, has the form (2.14), with K} = (Q, for some Q € R"*"
that, as detailed in the proof of Lemma 2.1, is invertible. Moreover, in view of
(2.40), ¢;(g) can be taken such that, for all £ > ¢;(g), D C N. Therefore, by
assumptions 2.3, 2.4, the functions \¢, A\; and v are defined on D and satisfy
(2.19), (2.20) and (2.21). Furthermore, as K¢ and K depend linearly on /, the
function v can be bounded uniformly on /.

Suppose now that (w,x) € N and consider the change of variables:

e é:=ée—uv(w,x)

ne 0 =n—v(w )
Xt—))Z:zx—Cgvl(w,x)—)\g(w,x)

(s = E+K()\5(w,x) +C’ZU1(w,x)) — Ac(w, x)

noting that A = 0 and A = 0, then we obtain

€= CeX - /Ul<w>x) = Cef( (241)
and, in view of (2.28) and noting that C.\¢ = 0, FC! = 0 and C.CT = I,,_, we
also have

X = (F+CTG\C. + HK)Y + HC + C (i — Guiiy). (2.42)

Thus, Lemma 2.1 can be used to show that, for each g > 0 and each € > 0, K can
be taken so that there exist 3, 8: € KL and ¢; > 0 such that

RO < 8RO +a (Il + o)

] ] (2.43)
E@)] < Be(IX(0)], 1) + €[Clio) + €llo,0)-
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Let
fi=Ag) 7', (2.44)

the same argument used before in dealing with ; show that
o= gMfi+g' ' E($(A(9)i + v(w, x)) = vasi (w, ) + gRCX (2.45)
Then, as ¢ is locally Lipschitz and bounded by C, for some L, > 0 it holds that

(A9 + v(w,2)) = Ve (1, 2)
< [6(A(g)fi + v(w, 2)) — B(v(w, 2))| + [$(v(w,2)) — vess (w,2)
< min{2C;, Lyg™ i} + |§(w, 2)
< L™l + 6(w, )|

where § is defined as in (2.23). Let § be a smooth function defined on N such
that

o(w, ) = 6] a(w, z) V(w,z) € A
6(w, )| < sup |§(w,z)| Y(w,z)€ R™", (2.46)
(w,x)eA

Then the function §(w, z) — §(w, z) vanishes on 4, so that we have

|6(w7'x>| = |5(w’l‘) - S(w,x) + S(wwx)‘ < |5(w,m) - 5(w,x)| + |5(w,x)|
S’Y(KIU,ZE)LA)—F sup |5(w,x)|

(w,x)eA
for some v € K that can be taken locally Lipschitz in V.
Standard high-gain arguments thus can be used to prove that there exists

g7 > 0 dependent on L, such that, for all g > g7, the following estimate holds

_ _ q 8
(0] < Ba(la(0)], 1) + g—i (II(w,x)lAl[o,t) + sup !5(w7af)!> +@leljo.n-

(w,x)eA

for some 3; € KL and some ¢» > 0. Thus, by letting 3; = g%~'3;, using the fact
that |7j| < g?!|| and |7;| < |ji|, we also obtain that the system 7 seen as a system
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with input € and output 7 fulfills

(w,x)eA

_ _ ¢ 1)
(@) < Ba(ln(0)], 1) + g—fl (H(wvm)\A\[o,g + sup \5(w,$)\) + 29" elion

. _ q s
m(®)] < B5(17(0)1, 1) + g—fl (H(w7x)‘v4‘[0,t) + sup \5(waw)\) + @2[ep,).

(w,x)eA

(2.47)

Since
E=x—Clm=x—Cl'i+ Ae(w,2)

C=C+Kx=C+ KX+ \(w,)
and CeAe = Af = 0, CeA¢ = A7 = 0, then

(2.48)

€71 < IX[ + [
¢ < ISl + KT,

so that, for some g3 > 0, inside N' Assumption 2.1 gives

[(w(t), 2()]a < B(I(w(0),2(0))].4, ) +as(L+|ED) Xl o+ IClo + 7l - (2:49)

Thus, in view of (2.43), (2.47) and (2.49), by choosing g > g*, where

g* = max {g], V/q2q3} (2.50)

and choosing K using Lemma 2.1 with such a choice of G; and with e that satis-
fies

€ < € :=min{e},1/q},
then, as (2.43) does not depends on |(w, z)| 4, applying the small-gain arguments

of (Jiang et al., 1994) twice yields the existence of a 51 € KL and a constant ¢4 > 0
such that, by letting

v(t) = max {|(w(t), z(t))].a, [X@O], [0()[} (2.51)

then in \V the following bound holds:

v(t) < Bi(w(0),t) + j—‘;( sup [6(w,2)] + a1lClo)- (2.52)
w,xr)e
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For what concerns ¢, instead, in view of (2.37) and (2.48), we have

w= ﬁ(/cgg K+ /cnm>
= £(Ke( — O + Mgl 2)) + Kl KX+ A(w,2) + Kyl + va(w, ) )
— £(Ke(¥ = CTin) + Ke(C + K + Ko )
+ c(/cgg(w, 2) + KeAc(w, z) + Kyon (w, g:))
= (L(K(X = CIp) = I, (C+ KX) + KCL7y)
+ c(/chg(w, 2) + KA (w, z) + Kyon (w, x))
— 0Ll + ﬁ(/cfxg(w, ) + K (w, ) + Kyon (w, :1:)).

As a consequence, in view of (2.19), with o the same linear map as in (2.36), we

have

(7, %, ¢) + q(w, ) + B(w, z)u

q(w, x) + B(w, x)ﬁ(/Cg)\g(w, z) + KeAe(w, z) + Kyor (w, :B))) + p(w, x)

Therefore, the same arguments as in Lemma 2.2 applied with ¢ = ¢ (which, in
view of Assumption 2.4 is locally Lipschitz and satisfies ¢|4 = 0), show that
there exists (*(g) > ¢}(g) such that, for all £ > ¢*(g), inside N it holds that

SO < B 8) + Z oo (2.53)

and with g5 > 0 and f; € KL such that

544 <1

14

Therefore, standard small-gain arguments show that inside N/, the following

bound holds:

lim sup max{v(1), [{(H)]} < L sup [5(w,z)]. (2.54)
t—o0 9" (w,z)eA
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for some ¢g > 0.

Now, to establish the bound (2.25), pick a point (w, z, ) in D. Then there exist
sequences ((w™, z™,n")), in Sy, (W x X x H) and (t,), in R, such that t,, — oo
and

(W™(tn), 2" (tn), 0" (tn)) = (w, 2, 7). (2.55)

From point 2 of the proposition, proved above, for sufficiently large n we have
(w™(tn), z™(tn),n"(t,)) € N, and, hence, (2.54) holds. For each n, let x" :=

xX(w™, z™), (o= C(w™ 2™) and 7" := n* — v(w",z"). Then, the error at (w,x)
satisfies
€= h6<w7 I) = Ceg(wv x) = Cef((w7x) - CeCeTﬁla

SO as

lel < IXT+ Tl < X = X" ()] + [ — 07 ()| + 1777 (8n) | £ [X" (£

As x(w,x) is continuous in (w, z), then, in view of (2.54) and (2.55), for each
e > 0, there exists n*(¢) € N such that n > n*(¢) implies

X = X"(tn)| = [X(w, ) = X(w" (tn), 2" (tn))] < /2

~n on de
|77 (tn)] + X" ()| < /24 = sup [6(w, z)|.
g (w,x)eA

By arbitrariness of ¢ and (w, z,n) € D, we then conclude that

sup [he(w,2)| < L sup [5(w, )], (2.56)
(w,x,n)ED 9" (w,x)eA
that, in view of the uniform attractiveness of D, implies (2.25). [

Proof of Lemma 2.1. Picki € {1,...,r} and, with k; > 0, define the matrix
Ai(k;) = diag(k) 2L, kN1, ... ki, I,,) and change coordinates as

With reference to the matrices defined in (2.10a)-(2.10c), noting that

Ai(ki)FiiAi(ki)_l =k Fy
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Ni(k)CF =k *Cf

then z* fulfills

—_

2= ki Fu2' + Hu + Ni(ky) (FyA (k)12 + Hy¢)
J

+ CTGLCi2' + kN 2CT (g — Gymy)

(2

Il
i

Let (of,..., oy _;) € HC(N; — 1) and, with D" := (—aﬁ[mi cee— a}'\,ﬁlImJ and
¢t e R™, let

C=C4 kD2 (2.57)
Since Fj; + H;; D' is Hurwitz, it can be shown that there exists £* > 1 such that,
for any k; > k*, the following holds

2(0)] < byt

2(0)] + bk (IClos + o)

L | (2.58)
+ b4k‘;v’i_3 Z k’j/ e‘b2ki(t_7)|zj (7)|dr
=1 70
for some by, by, b3,b, > 0. We can partition € as € = col(e',...,e"), with &" :=

k2 N2, Pick € > 0 and pick i € {1,...,7}. Suppose that, for each j = 1,...,i—
1, 27(t) fulfills
|27(8)] < hie™"|2(0)] + hé(|§|[0¢) + |77|[0,t)> (2.59)

for some hi, hi, hi > 0. Then, by letting for convenience k; := max;<;; k;, (2.58)

61



gives
[Z ()] < bre™!

2(0)] + bk (o + o)

t
+ bakN 3 (i — 1)]@(/ e~ P2kl 2(0)|dr
0

t
+/0 e DR (ICo.r) + |n|[o,7>)d7) (2.60)
2041k h kN~
< (b 2B bz
by
2b T’l_ﬂlhl o e ~
+ b+ =2 k" *(IClo) + lilio)
bok;
Fix barh
k; = max { k*, max kj, r bs + s L (2.61)
1<j<i € by
Then, in view of (2.60), the fact that (2.59) holds for j = 1,...,7 — 1 implies that
the same bound also holds for j = 1,...,4, with

. : 2byrht kN3
hit! .= max {hg, by + L}

by
BirL = min {bok;, 3} |
Ryt = max {hé, kai’Q}

€

Moreover, noting that |&/(t)| < k>

Zi(t)|, in view of (2.61), we have

i i N7

€' (t)] < gre®'[2(0)] + ;(|C|[o,t) + [nlo.) (2.62)
with ¢i :== hi*1 k2N and ¢} := hS™. Fix k; so that

ki > max{k:*, bg_?"} )

€

Then the sequence (2.61) is well-defined and (2.58) implies (2.59) for j < 2 and
(2.62) for i = 1, with h? := by, h2 := —byk; and ¢} = b1k*>~™, ¢} := bok;. Hence,

by induction we conclude that, foreach:=1,...,r

2O < ae ™ 12(0)] + As ([Closy + nlion) )
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and foreachi=1,...,r,,
y . €, -
e @1 < ae™z0) + ~(IClos + [lo)
with hy = BT, hy := RS, by := BT, @ = ¢} and @ := ¢;. Noting that

X < 30 IO < 320 (O] 12(0)] < &Y x(0)] and |e(t)] < 377, [€(4)],
then we obtain (2.29)-(2.30), with

By(s,t) := kN trhy exp(—hat)s as == k™ lrhy

Be(s,t) := reqh exp(—gat)s
and the claim follows with
K= (k:lDlAl(k:l) k,,D”Ar(kr)> .
|

Proof of Lemma 2.2. Fix the compact sets W x X C R"*" and define the
function
V(w,z) =/(TP(w,z)¢ (2.63)

on a neighborhood of W x X. Point a of Assumption 2.2 implies the existence of
A, A > 0 such that
AlC < V(w,z) < A[(]

for all (w,z) € W x X. Taking the Dini derivative of V" along the solutions of the
closed-loop system yields

1
2V (w, x)

DYV (w,z) = ( — ot (LTB(w, )P (w, x) + P(w, ) B(w, x)L)C

+20"P(w, 2) (p(n.x. O) + q(w, 7))
+ {(LMP(w, x) + Lgf)P(w, z) + L) P (w, x))f)

b(w,x

Point ¢ of Assumption 2.2 implies

¢t (ETB(w,:c)TP(w,:c) + P(w,x)B(w,x)ﬁ)f > |C]?
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SO as

—¢t (ETB(w,:c)TP(w,:c) + P(w,x)B(w,x)E)é < ¢

Let g(w, ) be any function that agrees with ¢ on A and that satisfies |¢(w, z)| <
SUD(y 2yea |q(w, )| for all (w, z) € R™*". Adding and subtracting 2¢" P (w, z)g(w, x)
yields

2C"P(w, ) (p(n, x, €) + q(w, x)) = 2" P(w, z) (p(n, x, ¢) + §(w, z) + ¢(w, z))

with ¢ := ¢ — ¢. As P is continuous, p is Lipschitz and, as ¢ vanishes on A and it
is locally Lipschitz, then for some M;(g) > 0 we have

20" P(w, ) (p(n, x, ¢) + q(w, x))

< @Il + el + <]+ [ a)lact swp lawa)]).

as long as (w, z) € WxX. Point b of Assumption 2.2 implies that Ll(f(?vvm)up(w, r) =

0, so as by continuity of P, as long as (w,z) € W x X, we can write

f(ng)P(w, T) + L;I)P(w, T) + L@ P(w,x))¢ < Ms|C[

b(w,x)u

for some M5 > 0. Since

1_ (g

then there exist oy, as(g) > 0 such that, as long as (w, z) € W x X, we have

DTV (w,z) < (az(g) — L)V (w, x) + aa(g) (In\ + x|+ [(w, z)[a+ sup |q(w, x)l),
(w,z)eA

and the result thus follows by taking, for some arbitrary ¢ € (0,q;), ¢3(g) =
max{(], az(g)/ (a1 — €)}. u

2.3.5 On the Controllability Assumption

Although Assumption 2.2 might seem to be constructed ad-hoc for the stabi-
lization problem inside Proposition 2.1, it turns out that it is general enough to
be actually implicated by many state-of-art assumptions routinely used in the

context of high-gain stabilization and regulation of multivariable systems. In
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the following we prove this fact for some relevant papers appeared in the litera-
ture. In this respect we notice that the following results give constructive proce-
dures to define the matrix £ (P is not required to be known as it is not used by
the control) using only quantities that are known in the respective frameworks.
In the following we assume that B(w, x) is C' and, for ease of notation, we let

x = (w, z).

Strong Invertibility in the sense of (Wang et al., 2015a) implies Assumption
2.2

Here we prove that the assumption of invertibility used, for instance, in the re-
cent papers (Wang et al., 2015a) and (Wang et al., 2016), implies Assumption
2.2.

Lemma 2.3. Suppose that m = n,, (i.e. B(x) is square), B(x) is bounded, LE;E) B(x) =

X)u

0 for all x € W x R", and there exists € > 0 such that all its principal minors A;(x),
i=1,...,r satisfy
[Ai(x)] > ¢, (2.64)

forall x € W x R". Then Assumption 2.2 holds.
Proof. According to (Wang et al., 2015a, Lemma 1), if (2.64) holds then B(x) can

be written as
B(x) = EM(x)(I + U(x)),

with M (x) = M(x)T positive definite for all x € W x R", U(x) a strictly upper
triangular matrix and with E a diagonal matrix satisfying £E = I. Lemma 2 of
(Wang et al., 2015a) shows that, if B(x) is bounded there exists ¢ > 1 such that,

with C := diag(c™ !, ¢™ 2, ... ¢, 1), we have
(I+Ux)C+CI+Ux)">1.
Let
L= EC, P(x):= EM(x)'E,
then, noting that
B(x)'EM(x)™' = (I +U(x))" M(x)' E"EM(x)™" = (I + U(x))"
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then we have (note that by construction £ = L = EC = CF)

LTB(x)"P(x) + P(x)B(x)L = ECB(x)"EM(x)'E + EM(x) 'EB(x)CE
—E|lC(I+U@) + I+ U(x))C] E
> 1,
for all x € W x R". Thus, since FE = I, point ¢ of Assumption 2.2 holds.
Furthermore, as M (x) > 0, then M (x)~! > 0 as well and, hence, P(x) is positive

definite and point a holds. Finally, according to (Wang et al., 2015a, Lemma 3),
L% B(x) = 0 implies L(gggi)uM(x) = 0. Since

g(x)u

LS M (x) ™ = =M (x) " L M(x)M(x) ™ =0,

then also point b holds, hence the result. [ |
Strong invertibility in the sense of (Wang et al., 2015b, 2017) implies Assump-
tion 2.2

Here we prove that the assumption of invertibility used, for instance, in the re-
cent papers (Wang et al., 2015b) and (Wang et al., 2017), implies Assumption
2.2.

Lemma 2.4. Suppose that m = n,, (i.e. B(x) is square) and that there exist a nonsin-
qular matrix M € R™*™ and a constant o, € (0, 1) such that

max ‘(B(x) - M) AM‘l‘ < 5 (2.65)
M

holds for all x € W x R", then Assumption 2.2 holds.

Proof. As (2.65) holds for all A € R™*™ satisfying |A| < 1, it holds in particular
for A = I, thus yielding
|B(x)M ™' —I| < 6.

Thus, for all p € R™ and x € W x R", it holds that
2p" (1= BEx)M " )p < 2p"(Bx)M " — I)p| < 2|p|* |1 — Bx)M |
< 26 |p|* = p" (260])p.
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Therefore, we obtain

pt (2[ -~ M TBx)" - B(X)M*1>p =2p'p —2p" B(x)M 'p
=2p (I - B(X)M_l)p < p’ (261)p.
As it holds for all p € R™ and x € W x R" then, necessarily
2] — M~ 'B(x)" — B(x)M ™ < 2501

and, thus, letting £ := M~ and P(x) := I/(2(1 — dy)), yields the point c of
Assumption 2.2. Point a of the assumption follows by noting that §, € (0,1) and

point b is straightforward as P is constant in x. |
Positivity and negativity in the sense of (McGregor et al., 2006; Back, 2009;
Astolfi et al., 2013) imply Assumption 2.2

Going back few years we find other three papers in which a “negativity” or a
“positivity” assumption on B is made. The following lemma refers to (McGregor
et al., 2006, Ass. 4.4).

Lemma 2.5. Suppose that m = n, (i.e. B(x) is square) and that there exists M &
R™>*™ such that the following negativity condition holds:

B(x)M + M*B(x)" <0 (2.66)

forallx € W x R™. Then Assumption 2.2 holds.

Proof. Let 6(x) := mino(B(x)M + MTB(x)). Equation (2.66) implies, for any
peR”andx € W x R",

p"(6(x))p = d(x)|p|* < p" (B(x)M + M"B(x)")p,

l.e.
MTB(x)" + B(x)M > §(x)1.
Thus Assumption 2.2 holds with £ := M and P(x) := /d(x). [ |

The following results instead refers to the positivity assumption of (Astolfi
etal., 2013, Assumption 1).
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Lemma 2.6. Suppose that m = n, (i.e. B(x) is square) and that there exists K €
R™>*™ such that the following positivity condition holds:

B(x)K + K'B(x)' > 1 (2.67)

forall x € W x R". Then Assumption 2.2 holds.

Proof. The proof follows by noting that the hypotheses of Lemma 2.5 hold with
M= -K. [ |

Finally, the following lemma shows that also the quite intricate condition of
(Back, 2009, Ass. 3) implies Assumption 2.2.

Lemma 2.7. Suppose that m = n,, (i.e. B(x) is square), and assume that there exist
a nonsingular matrix K, G~ := diag(g,,...,g,) and GT := diag(g;, ..., g}) such
that 0 < G~ < G and that

(B(X)Kp - G—p) ' <B(X)Kp - G+p) <0, (2.68)

forallp € R™and all x € W x R™ and where 11 := 2(G™ + G~)~'. Then Assumption
2.2 holds.

Proof. Equation (2.68) implies (G~ = (G™7)%)
~K'Bx)'II*GT — G I*PB(x)K + K'B(x)"II’B(x)K + G II*G" <0,
that in turn implies
M(x) := KT B(x)'TIPGT + G II?B(x)K > 0
for all x € W x R". Noting that

PGt =1-2(G"+G ) 'Gt =1-2(GT +G7) 1 (GT + G~ —G7) =21l - II*°G~
GIP=2-G (G"+G ) ' =201-G'?

then
M(x) =2 <KTB(X)TH n HB(X)K> ~ M(x)T
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Thus, M > 0 implies
KTB(x)'TI + IB(x)K = %(/\/l(x) + M(X)T> >0

and the claim follows with the same arguments of Lemma 2.5.

69



70



Robustness in Output Regulation

He most celebrated property of the linear regulator (see property P1 in
Section 1.1.3) is robustness to plant’s uncertainties. Namely, if the in-
ternal model unit is appropriately chosen, asymptotic regulation is en-

sured despite plant’s uncertainties that do not destroy linearity and closed-loop
stability, with the stabilizer chosen on the basis of the plant’s nominal value. The
whole nonlinear regulation theory developed so far (the regulators mentioned
in Section 1.2.3 included) failed to extend, in its full generality, this robustness
property and robustness itself, quite surprisingly, has been almost left out by
the majority of the output regulation literature of the last 20 years. This chapter
deals with the robustness issue in output regulation schemes. We fist analyze,
by means of a quite informal discussion, the reason why robustness is such a far
concept for nonlinear systems (Section 3.1). Then we present a (pre-processing)
regulator design based on low-power high-gain observers that extends to a class of
nonlinear systems the “structural robustness” properties of the local approach
of (Byrnes et al., 1997a) (Section 3.2). Then we present a framework in which

the usual notions of steady state and zero dynamics, as originally introduced in
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(Byrnes and Isidori, 2003), can be extended to the case in which the exosystem
is a differential inclusion, thus shifting the robustness issue to the exosystem
definition (Section 3.3). Finally, we present a new framework in which a general-
ized notion of robustness with respect to arbitrary topologies is defined relative
to arbitrary steady-state properties of the closed-loop trajectories (Section 3.4).
We review in this framework different existing regulators and we present new

results about robustness of post-processing schemes.

3.1 The Robustness Issue

This section contains some original considerations extracted by the tutorial pa-
per (Bin and Marconi, 2018b). For further details see also (Bin et al., 2018a) and
(Bin and Marconi, 2018a). While for linear systems the concept of robustness has
a clear and agreed meaning, for nonlinear system robustness is still quite a vague
concept that usually is treated in ad hoc manners. The reason of this fact is per-
haps that the type of plant’s perturbations captured by the concept of “structural
robustness” originally given by Francis and Wonham in (Francis and Wonham,
1975), that refers to perturbations obtained by changing the matrices entries, for
linear plants are general enough to include more “exotic” types of perturbations,
such as those framed in the context of differential topology (Hirsch, 1994). For
nonlinear plants, however, parametric uncertainties are way far to be sufficient
to describe the whole set of perturbations that may affect the plant’s functions,
and a general unifying concept of perturbation is probably not yet taken into
consideration. The first frameworks developed for nonlinear systems (see e.g.
Byrnes et al., 1997a,b), as well as the majority of the subsequent designs, just
focused on the extension of the parametric notion of perturbation and on the
corresponding generalization of the concept of “structural robustness”, with few
exceptions such as (Astolfi et al., 2015; Astolfi and Praly, 2017) in which the C*
topology was considered.

This considerable gap in the characterization of robustness that is present
between linear and nonlinear systems, led us to wonder two questions: What
would be the right way to extend the notion of “structural robustness” to nonlinear
systems? and Why robustness seems so far in nonlinear output regulation? While the

first section is answered thoroughly in Section 3.4, we focus here on an informal
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simple answer to the second, more conceptual, question.

The key point that makes linear systems so special is that they obey the su-
perposition principle and, as such, they do not distort linear input signals (i.e.
signals generated by linear exosystems). With reference to Section 1.1.3, super-
position principle means that if the linear stabilized plant (1.5), (1.13), (1.15) is
asymptotically stable, and it is excited by the input w produced by a linear ex-
osystem (1.7), at the steady state all the signals in the closed-loop will contain
exclusively the same harmonics of w(t). In other words, all the signals in the
closed-loop systems can be generated by the same linear process that generated
w(t), i.e. (1.7). As made clear in the nonlinear frameworks (and that is true also
in the linear case), the internal model should not be a model of the exosystem. Rather
it should be a model of any process that can generate the ideal error-zeroing control
law u*(t). The superposition principle implies that for linear systems u*(¢) can be
generated by any process that has the same modes of the exosystem, and hence,
the fact that ¢ replicates S turns out to be sufficient to ensure that n has the
internal model property. This, in turn, is also the reason why the same linear
regulator holds for any choice of the matrices P and @ in (1.5). For nonlinear
systems this fortunate relation between internal model and exosystem simply
does not hold, and seeking or trying to force it in nonlinear contexts results in
reductive and astray approaches'. This can be easily seen by considering the

following simple system?:

T = Ta+ T3

Ty = —x1 — Bro+exd+ Pw+za

.2 1 — B 1 3 (3.1)
Trs = U— X1

€ = I3

with § > 0 and ¢ € R small numbers, P := (0 1), and where w is generated by
the following linear oscillator:

'In this respect, we observe that this is directly implied by Assumption 1.8, as u* is given as
a function of only w.
“Notice that letting z = (21, 22) and e = z3 yields a system of the form (1.20).
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Every regulator that ensures e(t) = 0 for all ¢ € R, also must ensure é(¢t) = 0
almost everywhere in R,. This means that u(¢) must compensate, at the steady

state, the effect of z(¢) produced by the zero dynamics

w1 = Wy

Wy = (3.2)
51"51 = X2

Ty = —@p —Ba:2+e:pi’—|—w1,

i.e. u* must equal the output z; of (3.2) a.e. in R,. Therefore, any regulator
solving the problem must embed a suitable replica of (3.2) inside the control
loop to be able to generate u*(t) at the steady state. Nevertheless, no matter how
small § and |¢| are, for sufficiently large initial conditions of (w,x) the system
(3.2) admits chaotic solutions (see Sprott, 2010, Sec. 2.4). As a consequence, the
information given by the exosystem (a simple linear oscillator) is arbitrarily far
to be sufficient to individuate a model for the desired u*, that is potentially non-
periodic and has a chaotic attractor, and the role of the exosystem in generating
u*(t) confuses and melts with the residual dynamics of the plant (in this case the
dynamics of x; and x, restricted to the set in which z3 = 0). This example also
shows that Assumption 1.8 is very restrictive, since even a simple example like
(3.1) does not satisfy it outside a neighborhood of the origin®.

When (3.1) is linear (take ¢ = 0) and asymptotically stable, then the plant’s
residual dynamics, represented by the equations of x; and x5 in (3.2), just act as
a linear filter on w;, with the only effect to change its phase and amplitude. That
means that no matter how we chose 3 > 0 or even add new linear terms to (3.1),

if e = 0 and (x4, z5) is asymptotically stable, then u*(t) can be always produced

by the system
m = Tp,
2 = —m
ut = m

which is completely determined by the knowledge of the exosystem.

This example shows how in nonlinear systems the plant itself plays a strong

3To see this, note that if Assumption 1.8 holds, then u* is a function of w and, as such, must
be periodic. This however contradicts the fact that (3.2) has chaotic solutions for large enough
initial conditions.
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active part in the definition of the law u*(¢), and hence, if a regulator is con-
structed to embed a copy of the process that generates u*(¢) then any arbitrar-
ily slight perturbations in the plant, as well as in the exosystem, can in princi-
ple invalidate such an internal model, thus breaking the possibility of obtaining
asymptotic regulation. This leads us to conclude the following important, even

if straightforward, fact:

A regulator can in principle guarantee robust asymptotic regulation only
under perturbations of the plant or the exosystem that do not affect the

process that generates u*.

Therefore, looking for a nonlinear regulator that is robust with respect to arbi-
trary, even if small, perturbations of the plant is not conceptually different than
looking for a linear regulator that is robust also with respect to variations in the
exosystem matrix S, which is a property that also the linear regulator does not
have. This fact motivated the content of Section 3.4, where we formalize the fact
that the very special robustness property of the linear regulator is just a fortu-
nate consequence of linearity, and we conjecture that, in the general nonlinear

context, no regulator is robust.

3.2 Robust Internal Models by Immersion and the

Low-Power Construction

This section contains original results adapted by the author’s paper (Bin et al.,
2016). We propose a regulator that guarantees some form of robustness to a class
of parametric uncertainties. We first provide a procedure to immerse the (uncer-
tain) process that produces the error-zeroing control law u* into a known system
of higher order. Then we propose a design of the internal model unit based on
the low-power high-gain observers of (Astolfi and Marconi, 2015) to make the
implementation of internal model units of large dimension more convenient.
We follow here the same “structural robustness” concept of (Byrnes et al.,
1997a). The idea is to approach the design of “robust” regulators by assuming
that the whole uncertainty is concentrated in a fixed number of parameters of
the ideal internal model unit (that is, we assume that (1.7) holds with ¢ that

depends on some uncertain parameters); thus we define a simple procedure to
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immerse that uncertain ideal internal model in a larger system that does not de-
pend on the uncertain parameters. As the dimension of the new model might
increase considerably, we substitute the “high-gain” design (1.30) with an equiv-
alent “low-power high-gain” version, so as to avoid the power explosion of terms
of the form ¢’ that, as ¢ has to be chosen large, might result in infeasible practical

implementation.

3.2.1 Robustification by Immersion

Even though the considerations of Section 3.1 constitute a negative answer to
the robustness quest, for certain kind of problems robustness can be achieved
without adaptation by means of a design by immersion. Given two systems of the

form

& = flz) i = fi(a)
y = h(x) y = W)

defined on the subsets X ¢ R™ and X’ C R", n,n’ € N, with state z € R” and
2’ € R" and output y,5 € R? p € N, we define the concept of immersion of

systems as follows:

Definition 3.1. (Byrnes et al., 1997a) The system x is said to be immersed into x’ if
there exists a smooth mapping 7 : X — X' satisfying 7(0) = 0 and

h(w:) # M) = B(7(21)) # W (7(22))

for all x1, x5 € X and such that

or ,
T = fer)

h(z) = H(r(z))
forall x € X.

In other words, saying that x is immersed in 2’ means to say that the output y
corresponding to each solution x with values in X can be obtained as an output y’
of the system 2’ on X’. Immersion assumptions are at the base of many “robust”

approaches. For instance, nonlinear systems with parametric uncertainties have
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been considered in (Byrnes et al., 1997a) (see also (Byrnes et al., 1997b)), where
robustness is achieved by assuming that the (uncertain) process generating the
ideal error-zeroing control input u* is immersed into a linear system whose dy-
namics does not depend on the uncertain parameters. The same assumption
appeared for instance in (Khalil, 1998; Serrani and Isidori, 2000; Serrani et al.,
2001; Byrnes and Isidori, 2003; Huang and Chen, 2004), while immersion in a
known nonlinear system is exactly Assumption 1.7.

Here we start from Assumption 1.7, where however, ¢ is not known. We
assume thought that ¢ admits an affine parametrization in the unknown param-

eters, i.e. we can write
¢(-) = h(-) + 079 (), (3.3)

for some known h : R* — R, : R — R and p € N and for some unknown 6 € RP.
The idea is to find a new d' € N, larger than d, and ¢ : RY > R, independent on 0,
such that Assumption 1.7 holds with (d, ¢) substituted by (d’, ¢’). In other words,

we want to immerse the unknown nonlinear system*
u*(d) — (b(u*(o,dfl))

into the known system
u*(d’) _ gb'(u*(o’d,_l)).

The idea is not new in its essence. In (Isidori et al., 2012) the same idea has been
used to cope with an unknown linear ¢ with arbitrary dimension, while in (Forte
et al., 2013) the same idea has been extended to some nonlinear oscillators. Here
we provide a formal extension to (Forte et al., 2013).

The idea pursued here is illustrated in the following example

Example 3.1. Consider a linear oscillator of the form

i’lzl‘g

: _ 2
To = —0T1

with output

Yy =T,

4Recall from the notation section that u*(#7) := (u*(®) o+ (D g*(9)),
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where the frequency v € R is an unknown parameter. Differentiating i yields
Fg = —72d1.

As @9 = 1 and Iy = xf’), then we have

Ty o [ X1
@ = 7T .|
ZL‘l xl

Hence, along each solution of (3.4) that does not originate in the origin (and thus

guarantee that =7 + 27 > 0) we can write

. . 3
9 T1T1 —I—xlxg )

L
Differentiating further x§3) and substituting such expression of v yields

(4) _ T1x1 + iﬂgg) .

x ¥
1 . 1,
2?2 + 12

namely, by letting z := (z1, &1, &1, xf’)), we have that the system (3.4) is immersed
into the following system:

Z1 = 2

22 = Z3

23 = Z4

. o 2321 + 2924
24 = —Z% T z% Z3

that has twice the dimension of the original system (3.4), but that does not de-
pend on the unknown parameter 7. The intuition is that, if we have a model of
the z system, we also have a model of any system obtained from (3.4) by letting

v vary in R, without the need of knowing vy explicitly. A

We extend now the idea illustrated in the previous example to more general
classes of systems. With reference to Section 1.2.3, suppose that Assumption 1.6
holds, and let

U* = {u* given by (1.27) : (w,z) € Su.25(A)}
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be the set of all the possible error-zeroing inputs. We start from (3.3), by assum-
ing that all uv* € U* fulfill

0D = h(w* O 4y (u *(O,d—l))Tg’ (3.5)

with d, h, v, 0 defined as above. Note that from the the smoothness of f, ¢ and
bin (1.24), from the sign-definiteness of b and since A4 is compact and forward
invariant for (1.25), then for each d € N there exists a compact set U? C R such
that, for all u* € U*,

w9 (t) e U4, Vt € domu*. (3.6)

For any d € N, we then define Uy := U° x --- x U%.
For i € N we define the functions A’ : R%J — R as:

ho(u*(o’d+j_1)) — h( *(0,d+j—1))
ahg 1( (0,d+5— 2))

% (u*(o,dﬂ—l)) = *(Ldtj=1) =1,
and, for each k = 1,...,p, we let ¢/} : R*7 — R be the functions

0 (O = gy (yOHI-D)

i (w0 = 2 sl P R

Our(0.d+j—2)

where we let ¢/, denote the k-th component of . We then let ¢/ := col(¢], ..., Y7)

and
Hy (O = col (W (u®4H70) -+ j <)
\Ifl(u (0,d+i— 1)) — col <¢g( (0,d+5— 1)> < z)

Then we have the following result:

Proposition 3.1. Assume that there exist d,p € N, smooth h : R? — Rand ¢ : R —
RP, and 6 € RP such that, for all v* € U*, (3.5) holds, and suppose that there exists
m > p — 1 such that

rank ¥, (u) = p, Vue Ugri.

Then there exist d' € N and a locally Lipschitz ¢ : RY — R, independent on 0, such
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that Assumption 1.7 holds.

Proof. Differentiating (3.5) m times and collecting the obtained equations yields
W) G Odme1)y g (Odtm=1))g.
Solving for 6 leads to
0 — \I,m(u*(o,d+m—1))T(u*(d,d+m) _ Hm(u*(O,d—i—m—l)))‘ (3.7)
As U, has constant rank on the whole Uy, ,,_1, then the map

u € R o W (U aem) (W am1) — Hon (W)

is smooth in an open set containing Ugy,,, and, thus, (3.7) is well defined along
each u* € U™*.
Taking the (m + 1)-th derivative of (3.5) yields

T

u*(d+m+1) — hm+1 (u*(O,der)) + merl (u*(O,derfl)) 0’

and substituting (3.7) yields

where d’ :=d+m+ 1and ¢ : Uy, — R is the function

u— hm+1(u[l,d+m+1})+¢m+1(u[1,d+m+1])T'

W (gt aem) (a1, aemr1) — Ho (Ot d4m)))-

The existence of a locally Lipschitz map ¢’ : R — R that agrees with ¢ on Uy,
is then provided by the Kirszbraun theorem (see e.g. Federer, 1969, Theorem
2.10.43), and this concludes the proof. [ |

As a consequence of Proposition 3.1, we may end up with a pair (d, ¢) such
that Assumption 1.7 holds and no uncertainty is present. This results in a con-
trol design that is robust in the canonical sense. Nevertheless, it comes with a
regression order d that might be very large. As the Byrnes-Isidori regulator is

build to implement, at a given time scale and in given coordinates, a high-gain
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observer (Gauthier and Kupka, 2001; Khalil and Praly, 2013) of the quantity u*,
large model dimensions d would lead to an explosion of the power of the high-
gain parameter (denoted by g in (1.30)), with consequent problems in terms of
peaking, noise amplification and implementation issues (Khalil and Praly, 2013),
(Astolfi et al., 2016). In the next section we present a regulator design in which
the high-gain internal model unit of the Byrnes-Isidori regulator is substituted
by a “low-power” version based on the recent low-power high-gain observers intro-
duced in (Astolfi and Marconi, 2015), resulting in the same asymptotic behavior

but without having to implement terms of the form ¢’ with i > 2.

3.2.2 Low-Power High-Gain Internal Models

We consider here the same class of SISO normal forms (1.24) under Assumption

1.6 and with the following relaxation of Assumption 1.7.

Assumption 3.1. There exists d € N, a locally Lipschitz function ¢ : R? — R, a
5 € R, and, for each u* € U*, a continuous & : R — R, such that |6]., < 0 and

wD(t) = o (ur(t), a*(t), ..., uw V(1)) + ().

We observe that the same assumption has been considered in (Isidori et al.,
2012) for the Byrnes-Isidori regulator, under the additional Assumption 1.8 and
with A = graph 7 (in this case 0 can be taken as §(t) = v(w(t)), for some v : W —
R). In (Isidori et al., 2012), the authors showed that if v # 0, then the following

asymptotic bound on the regulation error holds:

limsup |e(t)] < —— (W), (3.8)

t—00 o gd+1

with ¢ > 0 a constant not depending on k or g. We will provide here an equivalent
result adapted to Assumption 3.1.
With (A4, B, C) a triplet in prime form of dimension 2 and g > 0 a high-gain
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parameter, let

N = BTB c R2%2

r = (C 0 ... 0) c R&x(2d—2)

T := diag(C,...,C,I,) € R¥*2d2)
Dy(g) = diag(g,g°) € R22,

Let Uy ; C R? be a compact set such that «*(*4-Y(t) € U,_, for all u* € U* and
all t € domw*. With r > 0 arbitrary, let ¢, : RY — R be any bounded Lipschitz
function such that ¢,(u) = ¢(u) for allu € U,_; +rB and |¢,(R?)| < C,, for some
C, > 0. For a n € R*~2 consider the partition n = col(n',...,n* ') with ' € R?,
and let F' : R?¢=2 — R?d-2 be the linear map

F(n) := col (Fl(n), o ,Fd_l(n))

where the elements Fj(n) € R? are defined as

Fi(n) = A& + Ny
E(ﬁ) = Anz + N’I]i+1 + Dz(g)Ll(BT’I]Z_l — C’I]Z), Z = 2, e ,d -2
Fi1(n) = Ana1+ Bos(Tn) + Dy(g)La—1(B"na—2 — Cna—1),

with L; := ({1 i) € RY? coefficients to be designed. Finally let
G :=col (Da(g)L1, Ogyr, -+, Oayy) € R¥2

Then we define the low-power high-gain regulator as a system with state n €

R??-2 and input v, satisfying the following equations

n o= F(n)+Gv
u = I'm+w (3.9)
= —ke,

with £ > 0 a further control parameter. Overall, the coefficients to be fixed
are the high-gain parameters g and k£ and the coefficients L; = ({;; {;2) for
i=1,...,d— 1. The existence of a choice for them, and the resulting asymptotic

properties of (3.9), are expressed by the following proposition:
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Proposition 3.2. With W C R™ and Z C R"* arbitrary compact sets, let Assump-
tions 1.6 and 3.1 bu fulfilled, with A that is also locally exponentially stable for
(1.25). Let E C Rand H C R?*2 be arbitrary compact subsets, then there exist
(b, lie) ER?% i =1,...,d—1, ¢g* >0, c > 0and, for each g > g*, a k*(g) > 0, such
that for all g > g* and k > k*(g) the trajectories of the closed loop system (1.24), (3.9)
originating from W x Z x E x H are bounded and such that

C

< —0. )
< kgdé (3.10)

lim sup |e(¢)]

t—o0

Proof. Let O be an open set containing W x Z. Let us define recursively the

functions 7; : © — R as

q(w, z,0
nw2) = _bgw 2 O;
Ti(w, 2) = %%WSW)%—%%Wf(w,z,O), 1=2,...,d,

and let 7¢ : O 4 — R?4~2 be the function

7w, z) :=col (7f(w,2) : i=1,...,d— 1)

i (w, z) := col (ri(w, 2), Tia (w, ).

The closed loop system (1.24), (3.9) is a system with unitary relative degree be-

tween the input v and the output e and zero dynamics described by

w = s(w)
z = f(w,z0)
m = Am + Nne+ Dy(g)Li(mi(w, z) — Cny) (3.11)

ni = Ani+ Nni1+ Da(9)Li(BTni_y — Cy) 1=2,...,d=2
Ni—1 = Ang—1 + Bos(Tn) + DQ(Q)Ld—1(BT77d—2 — Cng—1)

System (3.11) is characterized by the following lemma.

Lemma 3.1. There exists g* > 0 and a compact set B C R™T"=+24=2 gych that, for

all g > g*, B is asymptotically stable for (3.11) with a domain of attraction including
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W x Z x H. Moreover, there exists cy > 0 such that the following bound holds:
|71 (w, 2) — Cmy| < %5, V(w, z,m) € B. (3.12)

The lemma is proved below this proof. The rest of the proof follows from

quite standard arguments. Consider the change of variables

¢ 1
onz:n—G/ —ds,
o b

w, 2, S)

which is well defined as b is sign definite and which transforms 7 to the system
X =F(x) +G(n(w,z) = Cxa) + Aw, 2, €),

with

A(w,ze) = F (G(I 1) /0 mds)

— G(Q<wa z,€) +n(w,z)

b(w, z,e)

that, in each compact subset of R™*"=*1 is linearly bounded by |e|. The equation

of ¢, instead, reads as

é = 4w, 2,€) + b(w, 2 €)(Tx +v) + Aw, 2,¢) (3.13)
being
c 1
A(w, z,e) = b(w, z, e)FG/O mds

that on each compact subset of R™»™:T1 is linearly bounded by |e|. Developing
further (3.13) yields

é=b(w,z,e) (% +7m(w,z)+ Ty + v) + Aw, z, €)

= p1(w, z,€) + pa(w, z, e, x) + Aw, z,e) + b(w, z, e)v,
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with
p1(w, z,e) :=b(w, z,e) (ZEZ:—ZE; + 7 (w, z))

pr(w, 2 ) == b(w, z, )T (rx ~n(w, z)>

that vanish with (w, z,7) € B, e = 0 and § = 0. In particular, in view of Lemma

3.1, for each compact subset of R™ "= *! there exists M/ > 0 such that
9 —
|p1(w, z,€) + p2(w, z,€)| < ]\/[(\e’ + |(w, z,n)|s + g_35)-

Thus, by noting that the zero dynamics between the input v and the output e
coincide with (3.11) (with x = 7), and since A is locally exponentially stable,
standard high-gain arguments (see e.g. Byrnes et al., 2003; Isidori, 1995, 1999)
can be used to show that there exists £*(g) > 0 such that the claim holds. |

Proof of Lemma 3.1. Let

Ai(g) == g* ' Da(g)7",

and with
A(g) := diag (Ao(g), . ,Ad_l(g))

consider the change of variables

nei=Ag)(n —7(w)) (3.14)
We start analyzing the dynamics of ¢ component-wise. Consider the partition

e = col(ey,...,eq4-1), where foreachi = 1,...,d — 1 we let &; = col(g;1, &) € R

For i = 1 we have

€1 =Do(9)(m — 71 (w,2))
= D4(g) (Ami + N1 + Daolg) La(m(w, 2) = Cmy) = 7 (w, 2))

Noting that:
N — Ai_l(g)_lgi + 7—7;6(’(1), Z)
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Ai(g)AAi(g)*l = gA, Vi=0,...,d—1

A(g)NA(9) ™ = gN, Vi=0,....d—2
g ICN(g) " = gC, Vi=0,....d—1
7(w, 2) = 784 (w, 2) = At{(w, 2) + N754(w, 2), Vi=1,...,d—2

then we obtain

¢y = gAzi + Ao(g) (AT (w, 2) + NAL(g) ey + Nrs(w, 2) — 75w, 2)
+ 92L10A0(9)_151
=g(A+ L1C)e; + gNe,.

Fori € {2,...,d — 2}, instead:

&= Aia(g) (Am + Njs + Dag) Li( B 1 = On) = 7 (w, 2))
= gAe; + gNej1 + ¢> "V Ly(B iy — Cy)

Since
BT?h',l — CT}Z = BTAZ;2<Q)71€¢71 — CAi,l(g)flé?i + BTTZ-il(w, Z) — CTie(U), Z)
and, by construction,

BTTiefl(w, 2) = C1f(w,z) =0
g7 UBTA, 4(g) ™t = gBT

then we obtain
5.2' = g(A — LZO)& + gNgz‘_H + LZ‘BT&_L
Finally, for i = d — 1, we have

Ea1 = Ag_a(g) (And_i + Boy(Tn) + Da(g)La—1(B " ng—2 — Cna—1) — 751 (w, 2)>
=g(A— Ly 10)eq1 + gLg 1B ey 5
+ Ag-2(9) (ATj—l(wa z) + Boo (TA(g) e + T78(w, 2)) — 74_y (w, 2)>-
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Noting that

%gfl(w, z) = A5 1 (w, 2) + Big(w, 2), (3.15)

and since 7'7¢(w, z) = 7(w, ), then, by letting

e, 2) = () O g 2 ),

we obtain

i1 =g(A— Lg-1C)eg-1 + gLa-1B 42

+ gdllB<¢s (TA(g)_le + 7(w, z)) — Ta41(w, z))

Hence, by letting fori = 1,...,d — 1, E; € R**?, Q; € R**?

T 0(2d71)><1 B = —l;y 1 Q .: 0 4,
. 1 B _giQ 0 7 . 0 EiQ

and

Ey N 0 0

Q2 Ex N 0

0 - . .

M = Q;, E;, N ;

' 0

: Qa2 Eaoz N

0 ... ... ... 0 Qua FEu.

the system ¢ can be compactly rewritten as
¢ =gMe+ g% (gzﬁs (TA(g) e+ 7(w, 2)) — Ta1(w, z)) (3.16)

By using Lemma 1 in (Astolfi and Marconi, 2015), it is possible to show that we
can always choose the matrices L; such that M is Hurwitz. Let = be a compact
set such that » € H and (w,z) € W x Z imply ¢ € E. As M is Hurwitz and,
by construction, ¢, is bounded by Cy, then the reachable sets® R[; | (Z) are uni-

formly bounded for each 7 > 0, and we can assume without loss of generality

5See the notation section.
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that R; 1)(E) C int = for sufficiently large 7 > 0, as C; is independent on =. This

in turn implies that the Q-limit set B := Q3.11)(W X Z x E) of the zero dynamics

(3.11) is compact invariant and (Assumption 1.6) included in int(W x Z x =).

Point 1 of Assumption 1.6 also implies that for each (w, z,¢) € B/, (w, 2) € A.
Add and subtract to (3.16) the term g'~9¥¢(7(w, 2)) to obtain

¢ =gMe+g'™"% <¢5 (TA(g)'e+71(w,2)) — ¢(T(w, 2)) + 1/).
with
V= ¢(T(w, z)) — Tay1(w, 2).

As A is asymptotically stable for the (w, z) subsystem of (3.11), then there exists
t > 0 such that, for all t > £, 7(w,2) € Ug_; + rB and from the properties of ¢,
we claim the existence of a Ly > 0 such that, for all ¢t > ¢,

6u(TA(g) e + 7(w,2)) — B(r(w, 2))| < LolTA(g)e] < g™ Lyle].

As M is Hurwitz, standard high-gain arguments (Gauthier and Kupka, 2001;
Khalil and Praly, 2013; Isidori, 2017) show the existence of a g* > 0 such that,
for all g > g*, the following estimate holds:

limsup |e(t)] < %limsup lv(t)], (3.17)

t—o00 t—o00

uniformly in the initial conditions and for some a5, as, @3 > 0 independent on g.
Pick now (w, z,¢) € B'. By definition of 5/, there exists a sequence ((w™, 2", ")),
in S1.25(W x Z x Z) and a strictly increasing sequence (t,),, in Ry with ¢, — oo,
such that
(w"(tn), 2" (tn), " (tn)) = (w, 2, €). (3.18)

We thus have:
le] <le =€) + |" ()]
<le—e"(ta)] + % 1irtgsup [P(T(w" (1), 2" (¢))) — Tas1 (" (1), 2"(1))]
<le—€"(tn)]

+ Stimsup (Jo(uw,2) = 7 (w.2)] + [6(r(w(0) 2'(1))) = 6w, 2) |+

t—o00
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[7as (1, 2) = Taa (0" (1), 2" (9)])

Due to (3.18), and since (w, z) € A implies ¢(w, z) — 7441 (w, 2) = 0, then, for each
i > 0 and each large enough n the previous inequality yields

a3 <
|€| < n+ E(S,
and from the arbitrariness of x we claim that
a3 <
le] < =9
g

Let B be the compact set such that (w, z,n) € B if and only if (w, z,¢) € B'. Since

|71 (w, 2) — Cmy| < |e] a then the claim follows from the arbitrariness of (w, z, €).
|

3.2.3 An Example

In this example the low-power high-gain observer regulator (3.9) and the de-
sign approach by nonlinear regression presented above are applied together to
address a robust output regulation problem. The control goal is to asymptoti-
cally reject, by means of the same regulator, a disturbance which can be indis-
tinguishably generated by uncertain linear, Duffing or Van der Pool oscillators.
To this end, the immersion argument introduced above is used to find a system
(with an overall order of d = 7) in which all the three uncertain oscillators can
be immerse, and the low-power high-gain regulator (3.9) is used to implement
an internal model unit of such system.

In this example we consider the following controlled plant:
L 3
T1 = =271 + T,
.fQ :2x2—2ac1+u—w1

where u is the control input,

€ = T9

is the (measured) regulation error, and w; is the exogenous disturbance, which is

assumed to be generated from a linear, a Duffing or a Van der Pool oscillator with
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unknown parameters. In particular, we can model w; as the first component of
a system of the form
W = aw + i + vw® + ywi (3.19)

which for different configurations of the parameters includes, among all the oth-
ers, also the dynamics of interest. To put the plant in the normal form (1.24) we

simply let z = x; and we rewrite the plant as

= —2z+¢é°

e = 2e—2z+u—w.

Note that the steady state control law able to maintain the error to zero is exactly

u*

= w;, which satisfies Assumption 1.7, with d = 2 and ¢ given by (3.19). By
following the same notation as in the first part of the section, we can express ¢

as (3.3), with

«

* % 1.11* 6
Y(u,u*) = 3 0 :=

v

u*?u* o

The procedure detailed in Proposition 3.1 can be applied to construct a system
of dimension d = 7 into which (3.19) can be immersed. Hence, a regulator of the
form (3.9) is used to control the system, with an overall dimension of 2(d — 1) =
12. The controller design is completed by the choice v = —ke, where £ > 0
is chosen large enough. Figure 3.1 shows the simulation results of the overall
closed-loop systems subject to a disturbance w; which in the first 10 seconds is
produced by a sinusoid at frequency 3 rad/s (obtained from (3.19) with o = —9
and § = v = v = 0). At time ¢t = 10s it switches to the output of a Duffing
oscillator obtained by letting @ = 2, v = —1 and 8 = v = 0. Finally at time ¢ =
20s it switches to the output of a Van der Pool oscillator obtained with o = —4,
B=1,v=0and vy = —1. In order to dominate the dynamics of the 7" derivative
of the considered exosystem, we used a gain g = 200.A standard high gain design

we would have had a term of ¢? = 2007, which is a 17-digit number.
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Figure 3.1: Simulation results.

3.3 Output Regulation with Set-Valued Exosystems

This section contains original results published in (Petit et al., 2018). Here we ap-
proach the problem of robustness from a different perspective: instead of mod-
eling the exosystem as an ordinary differential equation (ODE), we model it as
a differential inclusion (Aubin and Cellina, 1984; Aubin, 1991), i.e. in place of
w = s(w), we write

w e S(w), (3.20)

with w € R" and being S : R"» = R"* a set-valued map. The solutions to (3.20)
are absolute continuous functions (Aubin and Cellina, 1984) that, thus, need not
to be differentiable but, rather, admit a distributional derivative that in general
may differ among any two solutions. In particular w : [0,¢{] — R™ is absolute
continuous if there exists a Lebesgue integrable function v’ : [0,¢] — R™ such

that we can write

Then we say that w(t) solves (3.20) if w'(s) € S(w(s)) a.e. in [0, t]. Clearly, system
(3.20) can generate a consistently larger multitude of signals than an ordinary
differential equation (which is obtained whenever S(w) = {s(w)} and when we
restrict to C' functions). A relevant case for regulation, for instance, is the abil-
ity to model differential equations subject to uncertain time-varying parameters

(in this case S is a parametrized map), or exosystems with variable structure. For
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instance, let 1 € R™ be an unmodeled time-varying vector of unknown param-

eters and suppose we have an uncertain exosystem of the form
w = s(w, ). (3.21)

Suppose moreover that we know that ;. ranges in a set M C R"+. Then, in place

of (3.21), we can consider (3.20) where
S(w) := {w/ eR™ : w' =s(w,p), u € M}

Modeling the exosystem with a differential inclusion means translating the un-
certainties in the right internal model to use into uncertainties in the model of
the exogenous signals. At the analysis level, the exosystem is usually needed to
define fundamental notions such as the steady state and the zero dynamics of a
nonlinear system, moving the attention from “signals” to “systems”. Under a
synthesis point of view, the exosystem is generally exploited to identify an ideal
steady state in which the regulated variables vanish, and thus to chose the de-
grees of freedom of the regulator. In most of the designs (see Section 1.2.3), the
structure of the exosystem enters explicitly in the definition of the regulator, and
generally only a perfect knowledge of the exosystem dynamics can guarantee
asymptotic tracking. Nevertheless, as in this thesis we eventually look towards
regulator designs that can adapt at run time, it is worth wondering if adaptive
regulators will still be as tied to the model of the exogenous signals as non adap-
tive ones or if the hypothesis of the exosystem being an ODE could be weakened
in future.

As a first preliminary work, in this section we follow the line of (Byrnes and
Isidori, 2003), by extending the concepts of steady state and zero dynamics to
the case in which the exosystem has the form (3.20). We also give necessary
conditions for the solvability of the output regulation problem and we extend the
characterization in terms of zero dynamics and the notion of efficient controllers
as given in (Byrnes and Isidori, 2003).

In this section we will adopt the following additional notations: L!® denotes
the space of functions that are locally in L;. With & = f(z,u) a differential
equation with input, where z € X and v € U, being X and U vector spaces, we

denote by (¢,z,u) — ¢.(t,z,u) the value of the solution originating in x € X
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at time t = 0 with input u. Moreover, for all fixed v and all X C X, we let
S.(X,u) == {¢.(-,z,u) : x € X} be the set of all the solutions starting in X
driven by the input u. With F a set of functions from R, to R¢, d € N*, and
with ¢ > 0, we denote by F|; the set of all functions obtained by restricting
an element of F to the interval [0,¢]. We denote by AC(X,)) the set of all the
absolute continuous functions from X' to ). We denote by (¢,,), /" a sequence of
t, € R, that are strictly increasing and lim,, oo t,, = 00. Let x = (21,29, ..., 2) €
R™ x R™ x ... x R™, for i =1,..., m we denote by Pr,,(z) := z; the projection
of x on R™. For a set X C R? and = € R?, we denote by T'x(z) the tangent space
to X at point z. In the following we will also often call ¢, a solution to a system
with state x to avoid confusion between solutions and point while keeping the

notation simple.

3.3.1 Preliminaries

In this section we consider the following interconnection

W € S(w) (3.22)
£ =v(w,8) (3.23)

in which an autonomous differential inclusion with state w € R™, n,, € N*,
drives a nonlinear system with state { € R"¢, n, € N*. We suppose that the initial
conditions of (3.22), (3.23) range in a compact subset W x = C R"™ x R™. We
assume that ¢ : W x R" — R™ is locally Lipschitz and S : W = R™» is Lipschitz
on W and has non-empty and compact values at each w € W.

We shall introduce now the essential preliminary concepts instrumental for

the forthcoming analysis.

Preliminary definitions:

With N, M > 0, we define the set of admissible solutions of (3.22) as

Lu(wo) = { 6w € Sultwn) : [¢uloo < M and Ve € Se(E, ¢u), Igeloo < N}
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which is the set of all the bounded solutions to (3.22) which produce bounded

solutions to (3.23). For ease of notation, with Z C R"» x R", we define the set
A(Z) = {(¢e, pu) € ACR,, R™ X R™) ;
Pw € £w(w0)7 Pe € 56(507 (pw)v (anwU> S Z}

which is the set of the admissible solutions to (3.22)-(3.23) from Z. With B a set of
functions from R, into R?, d € N*, we define the flow of B as the set-valued map
P : R, x R4 — R4

Du(t,bo) = {b R : Fp € Bo(t) = b, p(0) = by }.
With ¢ € B we define the w-limit set of ¢ as the set
w(p) = {b R : 3(tu)n S (tn) —nsioo b}

or equivalently w(y) = Ny>o P, (¢, ¢(0)). Furthermore, we define the Q-limit set of
B as

O(B) = {b R : I(t)n S @M, 0" € B, G (L) — b}.

Let A be a set such that A = U,ep{p(0)}. We shall say that the set A is Poisson
Stable if A = w(B) = U,epw(p). With A C RY, we say A uniformly attracts B if

Ve>0,3T >0, Vo B, Vt>T, |p(t)|a<e.
We say A is invariant for B if
Vte Ry, Vo € B, p(t) € A.

If the set B is clear from the context, we omit to mention it. When invariance or
attractiveness refer to the solutions to a differential equation (or inclusion), we
always refer to the set of complete solutions if not other set is mentioned.

Properties of Limit Sets:

We study now the asymptotic behavior of the admissible solutions to the inter-

connection (3.22), (3.23). Under mild existence and regularity assumptions, we
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show that the Q-limit set of A(W x E) is a well-defined compact set that uni-
formly attracts A(IW x Z). This results are instrumental for the forthcoming
analysis in the context of output regulation. From now on, we assume W to be
invariant for (3.22) and we fix N > 0 in the definition of £,(W). We denote
with ® the flow of the set A(IW x =). Finally, with slight abuse of notation, we
let Q := Q(A(W x =Z)) and we make the following existence and admissibility

assumption:

Assumption 3.2. The following hold:

A1) Forall wy € W, L, (wy) is non empty.
A2) §,(W)=L,(W)

A relevant case in which Assumptions A1-A2 hold is when the system (3.23)
is input-to-state-stable relatively to the origin and with respect to the input w.
In this case, indeed, there exist v, p € K such that (Sontag, 1995)

Viow € Sw(W), e ()] < (e (0)]) + ol @wl)

for all ¢ € S¢(Z) and for all ¢ € R,. Therefore, every pair (¢, ¢¢) is in A(W x Z)
with M := max,ew |w| and N := p(M) + maxecz v(|])-

With the next theorem we show that under Assumption 3.2 the Q-limit set
of A(W x Z) is a well-defined compact attractor for the admissible solutions to
(3.22), (3.23).

Theorem 3.1. Assume Al. Then ) is non-empty, compact, and uniformly attracts
A(W x E). Moreover, ) is the graph of an upper semicontinuous set-valued map and,
if in addition A2 holds, then () is invariant for A(<Q).

Before proving Theorem 3.1, we prove the following technical lemma.

Lemma 3.2. Forall t € Ry and any two solutions ¢, € S,,(W) and ¢!, € S, (£ (1)),
let & be the concatenation operator

Py Bt Py (8) 1= 110, (5) P (8) + L1t 4o0] ()i (5 — 1)

Then @y, ®1 ¢y € Sw(W).
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Proof. Since, by definition, ¢!, i = 0, 1, is absolutely continuous then it admits

derivative in Llloc such that
Auls) = a0+ [ (AL i
0
and (¢))'(s) € S(¢,(s)) a.e., i = 0,1. Then

Py D1 P, (8) = ¢, (0) + /0 (Ljo,q(w) (@n) (1) + Ly soof(u) (0y,) (u — t)) du
and then

(¢ @1 ) (5) = 1.0(8)(00) (5) + Lt (5)(120) (5 — 1)

which proves that % @; ¢! is absolutely continuous and satisfies (©9 @, pl ) (s) €
S(¢gn, @1 ¢y,) a.e.on Ry, [ ]

Proof of Theorem 3.1.

First we prove that (2 is compact. Boundedness follows from the definition of
L.,,(W), hence it suffices to prove it is closed. Let (w,, &, )nen be a sequence in §2
converging to (w, £). By definition of 2, for all n € N,

3t /3™ 0 ken € AW < E), (0 (1), @ (6)) = roroo (€nywn)-
We can index k on n to obtain for alln € N
[(0F " (1), o™ (7)) = (s wa)| < 27
that in turn implies
(" (80), o™ (1)) = (§ w)] < 27" + |(€nywa) — (€ w)].

This shows that ({,w) € Q and thus 2 is closed, hence compact.
We now show uniform attractiveness of € for A(W x Z). By contradiction,

assume

e > 0,VT' > 0,3t > T, (e, pw) € AW x Z), |[(pe(t), (1)) |a > €.
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Then there exist a sequence (t,), /" and a sequence (7, ¢} )nen in AW x =)
such that

(08 (tn), o (tn))|0 > €.

By definition of A(W x Z), (¢¢(ts), ¥4 (tn))n lives in a compact set and thus there
exists a subsequence which converges to (£, w), which is in 2 by definition. As
this is a contradiction and we claim the uniformly attractiveness of 2.

We now show invariance of €2 for A(§2). Pick arbitrarily (wy, &) € €2 and let
©w € Sy(wp). We now show a element ¢ € S¢(&o, u) is defined at least on [0, 77,
where T' > 0 does not depend on (wy, &) picked in 2. Consider cpgef € Se(Z, ou),
so as, by definition, |<pgef|oO < N. Let > 0 be such that 2 C nB (with B the unit
open ball in R™»*"¢). By the fact ¢ is locally Lipschitz there exists 7 > 0 such
that ¢ is defined on [0, 7] and ¢¢(t) < nforallt € [0, T)]. In fact Gronwall lemma
gives us :

vt € 10,7, | (1) — pe(t)] < Lo (0) — e (0) e (3.24)

where L is the Lipschitz constant of 1) on 7B. With

o> max{|gog€f(0) - €€ PI‘&(Q)}v

1
T" = min —In % ,
tePry,(Q) | L ‘Spg (0) —¢|

which is non-negative by the choice of ;.. Let us take 7 big enough to have
VE € R, VEE Ry, [ (1) — €l < p = J¢] <,

which is possible as gpgef has a compact positive orbit. In view of (3.24),if T' < T™,
then |g02€f(T) — @e(T)| < pand |pe(T)| < n. T* is independent of (wy, &) picked
in 2. From now on we considered only maximal solutions that, in view of the
previous analysis are defined for 7" > T™. By definition of (), there exist (¢,),
and (i, ¢¢) such that

(@Z(tn)a @g(tn» —?n—4o0 (U)Oa 50) .

By the hypotheses on S (see Aubin and Cellina, 1984, Thm. 1, ch. 2.4), for all
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n € N, there exists ¢, € S,,(¢ (t,)) such that

sup |0u"(t) — u(t)] < |9 (ta) — wu(0)[e.
te[0,7%]

By lemma 3.2, ¢! @, ¥, € Suw(W) and, from the last estimate, we obtain
Vi € [0, T, o @, o’ (tn +1) =nsioo Pult) -

We now have to prove the same kind of result for the variable . For all n € N,
consider the solution ¢} of (3.23) with initial condition ¢} (0) and input 7. Since
or By, € Sy, (W) then, by using the fact that S,,(W) = L£,,(W) and from the
definition of QEQ, we deduce that 85? is defined on R, and bounded by N. From

the Gronwall lemma we get

|9 (L, ¢ (0), 03) — Pe(t; So, Pu)| < (!@?(0) — ol + LT sup [@f(s) — ww(8)|> et

s€[0,T%]

for all ¢ € [0, T*]. Hence, for all ¢ € [0, T*],

(0 Bt ot (tn + 1), 0 Bt Pt + 1)) —rnosioo (Pult), (1))

and then (¢, (%), pe(t)) € Q. Since (@, (t), pe(t)) € 2 and T* does not depends of
the element chosen in it, invariance is obtained by induction.

Finally, to prove €2 is the graph of an upper semi continuous map. Define

7(w) = {5 eR™ : (w,§) € Q}

then 7 is well-defined and upper-semicontinuity follows from (see Aubin and
Cellina, 1984, Thm. 1, ch. 1). [ |

The following proposition also shows that (2 is the smallest set that has the

properties of Theorem 3.1.

Proposition 3.3. Assume () is not empty. Then (2 is the smallest closed set (in the

sense of inclusion) which uniformly attracts A(W x =).

Proof. Assume a closed set K uniformly attracts A(IW x =). Pick a point w € (2,
it suffices to prove that w € K. By definition there exist sequences (¢,), " and
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(©F: @ Jnen in A(W x Z) such that

(P (tn), Y (tn)) = w
and, from uniform attractiveness of K,

Ve > 0,37 > 0,Vt = T,Y(p¢, pu) € AW X E),  [(pu(t), ge(t)]x <

DN ™

Fix € > 0. Then, for n big enough,

+

d(w, K) < |(¢5(tn), ¢ () = 0+ (@ (tn), 9 () [k < =e.

DO ™

For arbitrariness of ¢ > 0, we thus claim that |w|x = 0, which proves w € K, as
K is closed. |

3.3.2 Necessary Conditions for Output Regulation

In this section, we show how the asymptotic characterization of the interconnec-
tions of the kind (3.22), (3.23) presented so far can be used to deduce necessary
conditions for the output regulation problem. In doing this we follows the line
of development of (Byrnes and Isidori, 2003).

We consider here systems of the kind

B e\  [he(wz)\ (3.25)
y = <ya> = (ha(w,x)> =: h(w, x)

with state z € R, control input u € R™, output y = (y,,€) € R"™ x R™ and with
w € R" that is generated by the exosystem

W € S(w) (3.26)

with initial conditions that range in a compact invariant set W C R"™. As before,
we assume S : R"™ = R" to be Lipschitz on W with non-empty compact values
at each w € W, and we assume that f and % are locally Lipschitz. As in the rest of
the text, the output e represents the system outputs that need to asymptotically

vanish, while y, is the set of measured outputs that might be needed for stabi-
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lization purposes but that are not required to vanish at the steady state. In this
framework the problem of semiglobal output regulation reads as follows: given a

compact set X C R" of initial conditions for (3.25), find a controller of t